# Lecture IV Confidence intervals Hypothesis tests

STA9750 Fall 2018



### Logistics

- HWI up on the website, due 09/26
- New class dynamic:
  - I'll upload a handout and datasets at least 24h before lecture with SAS commands
  - I'll expect you to have looked at the handout and tried things out
  - In lecture, I'll go through the handout and answer questions you had as you went through it
  - After that, I'll lecture about some new topic, which will be the object of the new handout

### Today

- Confidence intervals
- Hypothesis testing
- Review of last week's handout

#### Confidence intervals

- Want: estimate some unknown  $\theta$
- **Goal:** Provide a range of values that seem "good," not just one point estimate...
- Suppose that the data  $X\,$  are independent and identically distributed (iid)

 $x_i \stackrel{\text{iid}}{\sim} P_{\theta}, \, \theta \text{ unknown}$ 

• A random interval [L(X), U(X)] is a  $(1 - \alpha) \cdot 100\%$  confidence interval (CI) for  $\theta$  if, for all possible  $\theta$ :

$$P(L(X) \le \theta \le U(X)) \ge 1 - \alpha$$

### Cls... Interpretation?

- If you use 95% CIs all your life, roughly 95% (or more) will catch the "true value" [if the assumptions under which you derived the CI sort of hold...]
- What about this particular one? The 95% guarantee refers to repeated sampling, not a particular dataset

https://istats.shinyapps.io/ExploreCoverage/

#### Examples

- Normal mean:  $x_i \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$  , then  $(1 \alpha)\%$  CI for  $\mu$ 
  - n sample size
  - $ar{x}$  sample mean
  - $S_{\rm sample \ standard \ deviation}$

$$C_{\alpha} = \overline{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$$

 $t_{n-1,lpha/2}$  quantile of Student-t, n-1 deg. of freedom

It's "exact": 
$$P(\mu \in C_{\alpha}) = 1 - \alpha$$

If you need more review, this might be helpful: <a href="http://www2.stat.duke.edu/~vp58/stalll/lecture13.pdf">http://www2.stat.duke.edu/~vp58/stalll/lecture13.pdf</a>

#### Hypothesis testing

• Want to choose between competing hypotheses  $H_0$  (null) and  $H_1$ (alternative)



### Common practice

- I. Assume that  $H_0$  is true
- 2. Find the *p*-value: probability of finding data as "extreme" or "more extreme" (in a direction favorable to  $H_1$ ) than the observed data under  $H_0$
- 3. Reject  $H_0$  if the *p*-value is below a pre-specified threshold  $\alpha$ . Otherwise, don't reject  $H_0$

If you follow this procedure, you will wrongly reject the null  $lpha \cdot 100\%$  of the time

#### Cls and hypothesis tests

• Given  $a(1-\alpha) \cdot 100\%$  Cl, you can do an  $\alpha$ -level hypothesis test for  $H_0: \theta = \theta_0$  against  $H_1: \theta \neq \theta_0$  by checking whether the interval contains  $\theta_0$  or not

• Similarly, given a test, we can find CIs by finding the values of  $\theta_0$  for which  $H_0: \theta = \theta_0$  isn't rejected

#### Two-sample tests, normal mean

$$y_{i1} \stackrel{\text{iid}}{\sim} N(\mu_1, \sigma^2) \qquad H_0: \mu_1 = \mu_2$$
  
$$y_{l2} \stackrel{\text{iid}}{\sim} N(\mu_2, \sigma^2) \qquad H_1: \mu_1 \neq \mu_2$$

- If  $i \neq l$ ,  $y_{i1}$  and  $y_{l2}$  are independent
- Independent samples: also independent if i = l
- Paired tests: dependent if i = l
- Usually, paired observations are 2 measurements on the same experimental unit
  - Example: measurements before and after some treatment

## Contingency tables

- We have two categorical variables
- We want to know if the distribution of one of the variables depends upon the levels of another
- Example:
  - Variables: Policy support and party affiliation
  - Does policy support depend on party affiliation?
- <u>Chi-squared test</u>:  $H_0$ : variables are independent  $H_1$ : variables are dependent

#### ANOVA

- Testing whether all the means from different groups are equal
- We have normal data coming from k groups

$$y_{ij} \stackrel{\text{ind}}{\sim} N(\mu_j, \sigma^2)$$
  
 $i \in \{1, 2, \dots, k\}$  group  
 $i \in \{1, 2, \dots, n_j\}$  observation  
within group j

 $H_0: \mu_1 = \mu_2 = \dots = \mu_k$  $H_1:$  at least 2 pop. means are different

### Now... Go through handout

• Find *p*-values and CIs with SAS