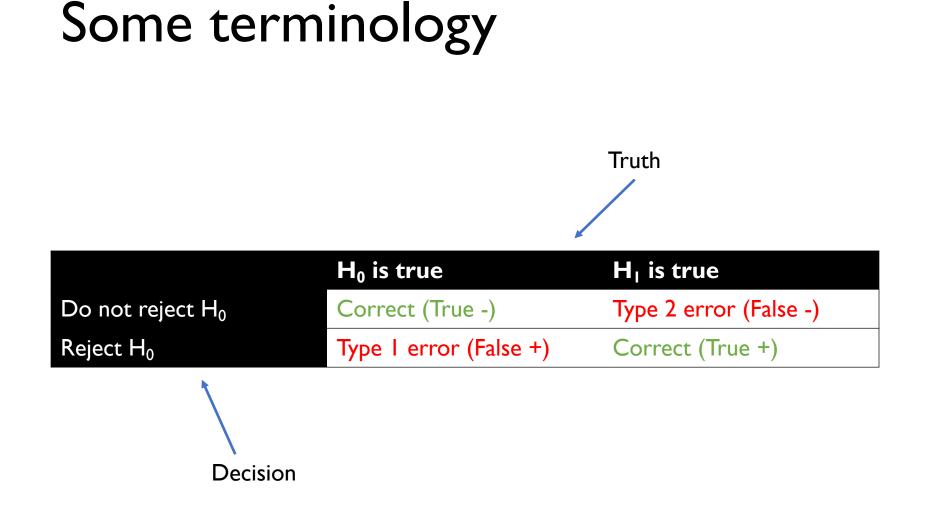
Hypothesis tests STA9750 Spring 2019

Conceptual setup

Basic setup

- Data come from a probability model which has some unknown characteristics (parameters)
- We usually make some assumptions about the datagenerating mechanism (DGM)
 - Example: The data are normal with unknown mean and variance
- Our goal is learning about an unknown feature of the DGM (a parameter), given the data

A way of doing hypothesis tests


Start with a null hypothesis H_0 for the DGM, which you don't want to reject unless you have enough evidence to reject it, and an alternative hypothesis H_1

Desired properties

- If H_0 is true, we want to falsely reject it at most 100 α % of the time (you decide what α is before you do the analysis)
- If H_1 is true, we want the probability of rejecting H_0 to be as high as possible

Implementation: p-values

- If the *p*-value is less than α , reject H₀; otherwise, don't reject H₀
- If the p-value is less than α , we say that the result is "statistically significant" (there is significant evidence against H₀)

One- and two-sided alternative hypotheses

- An alternative hypothesis is said to be <u>one-sided</u> if it's of the type "greater than" or "smaller than"
 - Example: The recovery rate of a new drug is greater than 50%
- An alternative hypothesis is two-sided if it's of the type "not equal to"
 - Example: Average math scores are not equal for men and women

Tests we saw last time

Tests for one group

- Testing proportions (z-test)
 - A pharmaceutical wants to market a new drug. They'd like to argue that their drug has a recovery rate of at least, say, 50%
 - Null hypothesis: recovery rate less than or equal to 50%
 - Alternative hypothesis: recovery rate greater than 50%
- Testing means (t-test)
 - You want to argue that the highest speed that people drive at is, "on average," greater than the highest speed limit in the country (85 mph)
 - Null hypothesis: average maximum driving speed is less than or equal to 85mph
 - Alternative: average maximum driving speed is greater than 85mph

One proportion with SAS

- Example: drug.csv (0 = no recovery; I = recovery)
 - H₀: recovery rate less than or equal to 0.5
 - H_a: recovery rate greater than 0.5

```
PROC FREQ data = drug;
TABLES recovery / binomial (p = 0.5);
RUN;
"boundary"
case
```

Sample recovery rate < 0.5... **Definitely not rejecting the null! No need to look at any p-values**

	<u> </u>					
recovery	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
0	34	<mark>56.67</mark>	34	56.67		
1	26	43.33	60	100.00		

Test of H0: Proportion = 0.5					
ASE under H0	0.0645				
Z	1.0328				
One-sided Pr > Z	0.1508				
Two-sided Pr > Z	0.3017				

p-value for H₀: recovery rate = 0.5 H_a: recovery rate \neq 0.5 Smallest p-value out of one-sided tests

Test I

 H_{01} : recovery rate ≤ 0.5

 H_{al} : recovery rate > 0.5

Test 2

 H_{02} : recovery rate ≥ 0.5 H_{a2} : recovery rate < 0.5

p-value(test 2) $\leq p$ -value(test 1) if sample recovery rate < 0.5p-value(test 2) = 1 - p-value(test 1)

One mean with SAS

- Example: speed data
 - H₀: max speed less than or equal to 85mph
 - H_a: max speed more than 85mph "boundary" case
 PROC TTEST data = speed sides = U H0 = 85 ; VAR speed;

RUN;

- Alternative "greater than" sides = U
- Alternative "less than" sides = L
- Alternative "not equal to", don't type sides

DF	t Value	Pr > t	
1306	<mark>9.2</mark> 5	< <u>.0001</u>	🗕 p-value

Assumptions / conditions one group

- For testing proportions (z-test)
 - I. Assume data come independently
 - 2. Check that sample size is "big enough" (some people would say than more than 30 observations is fine)
- Assumptions for testing means (t-test)
 - I. Assume data come independently
 - 2. Assume DGM with finite variance
 - 3. Check that either
 - Sample size is "big enough"
 - Sample is is small, but data look bell-shaped (normal)

Two groups: Independent means *t*-test

- Example:
 - Want to know if standardized scores in math are the same "on average" for men and women
 - Null hypothesis: scores don't depend on gender
 - Alternative: they do
- Assumptions / conditions
 - Assume the data within groups are independent, groups are independent
 - Check that either / or
 - Sample size is big enough
 - Data within each of the groups look normal
 - Some versions of the test require that the variance of the groups be equal, some don't

2 independent means with SAS

Example: speed data

 H_0 : max speed in men = max speed in women H_a : max speed in men \neq max speed in women

```
PROC TTEST data = speed;
VAR speed;
CLASS gender;
```

Can use options "H0" and "sides" as in one-sided tests (order of difference is alphabetical; here it's "female – male")

RUN;

Method	Variances	DF	t Value	Pr > t	
Pooled	Equal	<mark>130</mark> 5	-8. <mark>4</mark> 8	<.0001	p-value equal variances
Satterthwaite	Unequal	840.93	- <mark>8</mark> .33	<.0001	p-value unequal variances

"New" tests

Paired means testing

- Two measurements on the same individual, under different circumstances
- For example, we measure some biomarker before and after treatment, and we want to know if there is a *significant* change
- The two measures (before, after) are correlated
- Paired means testing
 - I. Take the difference "after before" (in a DATA step)
 - 2. Do a test for one group (use PROC TTEST)
- Assumptions: individuals are independent, sample size is "big enough" or difference looks bell-shaped (normal)

z-test for 2 proportions

- Compare probabilities of success in 2 independent groups
 - Are they the same? Is one greater than the other?
- Example: Want to test if two treatments have the same recovery rate
- Assumptions
 - Data within groups are independent, groups are independent
 - Either / or
 - Sample size is big enough
 - Data within each of the groups look normal

2 proportions with SAS

- Example: 2drugs
 - H₀: recovery rate drug A = recovery rate drug B
 - H_a : recovery rate drug A \neq recovery rate drug B

```
PROC FREQ data = twodrugs;
TABLES drug*recovery / chisq;
RUN;
```

Statistic	DF	Value	Prob	
Chi-Square	1	2.1825	0.1396	🔶 p-value
Likelihood Ratio Chi-Square	1	2.1967	0.1383	
Continuity Adj. Chi-Square	1	1.4556	0.2276	
Mantel-Haenszel Chi-Square	1	2.1429	0.1432	
Phi Coefficient		- <mark>0.1992</mark>		
Contingency Coefficient		0.1954		
Cramer's V		- <mark>0.1992</mark>		

Tests of independence: Categorical variables

- Suppose we have 2 categorical variables
- Null hypothesis: the variables are independent
- Alternative hypothesis: the variables are dependent
- Example:
 - Variables: X = socioeconomic status, Y = Type of high-school attended (public or private)
 - Null hypothesis: the type of high-school you attended does not depend on your socioeconomic status
 - Alternative: the type of high-school you attended depends on your socioeconomic status [e.g. rich people go to private schools more than working-class people]
- Assumptions:
 - Data come independently
 - Expected counts under independence are "big enough" for most cells

Tests of independence with SAS

- Using the hsb2 dataset:
 - H₀: school type independent of soc/econ status
 - H_a: school type dependent of soc/econ status

```
PROC FREQ data = hsb2;
TABLES schtyp*ses / chisq;
RUN;
```

Statistic	DF	Value	Prob	
Chi-Square	2	6.3342	0.0421	 p-value
Likelihood Ratio Chi-Square	2	7.9060	0.0192	
Mantel-Haenszel Chi-Square	1	0.2191	0.6397	
Phi Coefficient		0.1780		
Contingency Coefficient		0.1752		
Cramer's V		0.1780		

Confidence intervals

Confidence intervals are random intervals that come with a long-run guarantee:

- If you report 95% confidence intervals all your life, 95% of them will capture the true value
- You can't say anything about a particular interval; it either contains the truth or it doesn't

Visualization: http://rpsychologist.com/d3/Cl/

 In SAS, you can find CIs for means and proportions (one and two groups) using the same PROCs we used for testing