Today

- Confidence intervals
- One proportion, one mean, two proportions, two means
- Confidence intervals and hypothesis tests
- Pairwise comparisons
- Correlation

Confidence intervals

Confidence intervals are random intervals that come with a long-run guarantee:

- If you report 95\% confidence intervals all your life, 95\% of them will capture the true value
- You can't say anything about a particular interval; it either contains the truth or it doesn't

Visualization: http://rpsychologist.com/d3/Cl/

In SAS, you can find Cls for means and proportions (one and two groups) using the same PROCs we used for testing

One proportion

- PROC FREQ gives us intervals
- Example: drug.csv
- If we want $99 \% \mathrm{Cl}$ for recovery rate...

```
PROC FREQ data = drug;
TABLES recovery / binomial riskdiff alpha = 0.01;
RUN;
```

alpha is "I-confidence level" [here conf. level $=0.99$]

Binomial Proportion	
recovery $=0$	
Proportion	0.5667
ASE	0.0640
99\% Lower Conf Limit	0.4019
99\% Upper Conf Limit	0.7315
Exact Conf Limits	
99\% Lower Conf Limit	0.3938
99% Upper Conf Limit	0.7287

Based on normal approximation (you probably saw this one in intro stats)

Doesn't rely on normal approximation

One mean

- PROC TTEST gives us Cls for means
- Example: speed dataset
- 95\% confidence interval for max. speed

```
PROC TTEST data = speed alpha = 0.05;
    VAR speed;
RUN;
```

Mean	95% CL Mean		Std Dev	95% CL Std Dev	
90.7330	89.5166	91.9493	22.4157	21.5882	23.3098

Two independent means

- Again, use PROC TTEST
- Example:
- $99 \% \mathrm{Cl}$ for difference in max speed "female - male"

```
PROC TTEST data = speed alpha = 0.01;
    VAR speed;
    CLASS gender;
RUN;
```

Equal variance

gender	Method	Mean	99% CL Mean		Std Dev	99% CL Std Dev	
female		87.0865	85.2087	88.9643	21.4179	20.1650	22.8244
male		97.9182	95.1278	100.7	22.6250	20.8068	24.7641
Diff (1-2)	Pooled	-10.8317	-14.1280	-7.5353	21.8314	20.7804	22.9863
Diff (1-2)	Satterthwaite	-10.8317	-14.1903	-7.4730			

Two proportions

- Use PROC FREQ
- Example: 2drugs.csv
- $99 \% \mathrm{Cl}$ for difference in recovery rates

PROC FREQ data = twodrugs;
TABLES recovery*drug / chisq riskdiff alpha = 0.01; RUN;

Column 1 Risk Estimates						
	Risk	ASE	(Asymptotic) 99\% Confidence Limits	(Exact) 99\% Confidence Limits		
Row 1	0.3571	0.0906	0.1239	0.5904	0.1477	0.6155
Row 2	0.5556	0.0956	0.3092	0.8019	0.3002	0.7912
Total	0.4545	0.0671	0.2816	0.6275	0.2831	0.6340
Difference	-0.1984	0.1317	-0.5376	0.1408		
Difference is (Row 1 - Row 2)						

Cls and hypothesis tests

- Example: Want to know if the difference in math scores between men and women is significantly different than 0 at the 0.05
- We can find a 95\% confidence interval for the difference in scores "men - women" and check whether it contains 0
- If the interval contains 0 , don't reject the null hypothesis that there is no difference
- If the interval doesn't contain 0 , there are significant differences between men and women at the 0.05 significance level

Cls and hypothesis tests

In general...

- Let θ be an unknown feature of the DGM
- Suppose we know how to construct (I- α) 100% confidence intervals for θ
- We want to test $H_{0}: \theta=\theta_{0}$ against $\mathrm{Ha}: \theta \neq \theta_{0}$ at the α significance level
- We can do the test by checking whether θ_{0} is contained in the interval
- If θ_{0} is in the interval, don't reject the null; otherwise, reject the null

Pairwise comparisons

Comparing more than 2 groups

- Example: We want to know if there are differences in average standardized testing scores for different socioeconomic statuses, using the hsb2 dataset
- How can we solve this problem?
- We know how to compare 2 groups, but now we have 3 groups: low, middle, and high socioeconomic status

Pairwise tests

- An approach is doing 3 pairwise two-sample tests
- Low vs middle
- Middle vs high
- Low vs high
- If we do these 3 tests at the 0.05 significance level (each), the probability that there is at least one false positive (type I error) is roughly 0.14

Pairwise tests

- If we have k groups, there are k choose 2 pairwise comparisons
- If our significance level is 0.05 , the probability that there's at least one false positive (FP) is

$$
\operatorname{Pr}(F P \geq I)=I-\operatorname{Pr}(F P=0)=I-0.95(\text { k choose } 2)
$$

- For example, if $\mathrm{k}=5, \operatorname{Pr}(\mathrm{FP} \geq \mathrm{I})$ is approximately 0.4

A (not-so-great) fix

- A general solution to this "multiple testing" problem (which isn't specific for pairwise comparisons) is the following
- Bonferroni: If we're are doing N tests and want to ensure an overall false positive rate of 0.05 , conduct the individual tests at the $0.05 / \mathrm{N}$ significance level
- Problem:Very stringent.
- For example, if we have 5 groups, there are $\mathrm{N}=(5$ choose 2) $=10$ pairwise tests, so we should perform the tests at the 0.005 significance level, which is quite harsh

Tukey's honest significant difference

- If we're comparing the "means" (expectations) of groups with either / or
- Approximately normal distributions
- Sample sizes that are big enough, and the DGM has finite variance
- We can use a less stringent method called Tukey's honest significant difference (there are others)
- SAS will do it for us
- Example: compare average scores in standardized tests for low, middle and high socioeconomic status at an overall significance level $\alpha=0.01$

```
PROC ANOVA data = hsbnew;
    CLASS ses;
    MODEL avg = ses;
    MEANS ses / Tukey alpha = 0.01;
RUN;
```

Alpha	0.01
Error Degrees of Freedom	197
Error Mean Square	59.57878
Critical Value of Studentized Range	4.16833

Comparisons significant at the 0.01 level are indicated by	$* *$			
ses Comparison	Difference Between Means	Simultaneous 99\% Confidence Limits		
high - middle	4.344	0.553	8.135	$* *$
high - low	7.617	3.152	12.082	$* * *$
middle - high	-4.344	-8.135	-0.553	$* * *$
middle - low	3.274	-0.784	7.331	
low - high	-7.617	-12.082	-3.152	$* * *$
low - middle	-3.274	-7.331	0.784	

If an interval doesn't contain 0 , the difference between the group is significant

Correlation

Sample correlation

- Sample correlation is useful for quantifying the degree of linear association between 2 quantitative variables
- It can be computed in different equivalent ways. For example, if we have variables X and Y that come in pairs:

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

- We can compute a z-score for each datum:

$$
z_{x_{i}}=\frac{x_{i}-\bar{x}}{s_{x}} \quad z_{y_{i}}=\frac{y_{i}-\bar{y}}{s_{y}}
$$

- And find:

$$
r=\frac{1}{n-1}\left(z_{x_{1}} z_{y_{1}}+z_{x_{2}} z_{y_{2}}+\cdots+z_{x_{n}} z_{y_{n}}\right)
$$

Correlation

- r is always between $-I$ and I.The extremes are attained when there are perfect linear relationships (with negative and positive slope, respectively)

Positive correlation $(r>0)$

Negative correlation $(r<0)$

$$
\begin{aligned}
& \text { When } x_{i} \text { is below } \\
& \text { the mean of } x, y \text { is } \\
& \text { usually above the } \\
& \text { mean of } y_{i} \\
& \text { When } x_{i} \text { is above } \\
& \text { the mean of } x, y \text { is } \\
& \text { usually below the } \\
& \text { mean of } y_{i} \\
& r=\frac{1}{n-1}\left(z_{x_{1}} z_{y_{1}}+z_{x_{2}} z_{y_{2}}+\cdots+z_{x_{n}} z_{y_{n}}\right)
\end{aligned}
$$

Correlation ~ 0

roughly the same positive \& negative... will cancel out \& r ~ 0

$$
r=\frac{1}{n-1}\left(z_{x_{1}} z_{y_{1}}+z_{x_{2}} z_{y_{2}}+\cdots+z_{x_{n}} z_{y_{n}}\right)
$$

r measures the strength and direction of linear dependence:

- If there is a clear pattern, but it isn't linear... r is inadequate!

7.7 Match the correlation, Part I. Match the calculated correlations to the corresponding scatterplot.
(a) $r=-0.7$
(b) $r=0.45$
(c) $r=0.06$

(3)
(4)

Correlations with SAS

- PROC CORR computes correlations for us
- To visualize the data, we can create a "scatterplot matrix" with PROC SGSCATTER
- Example: in the hsb2 dataset, suppose that we want to find the pairwise correlations between math, writing, reading, science, and social studies scores

```
PROC CORR data = hsbnew;
VAR math write socst science read;
RUN;
PROC SGSCATTER data = hs.bnew;
matrix math write socst science read;
RUN;
```

| $\left.\begin{array}{c}\text { Pearson Correlation Coefficients, N = 200 } \\ \text { Prob }\end{array} \right\rvert\,$ r\| under H0: Rho=0 | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |$]$

