# Today

- Confidence intervals
  - One proportion, one mean, two proportions, two means
- Confidence intervals and hypothesis tests
- Pairwise comparisons
- Correlation

#### Confidence intervals

Confidence intervals are random intervals that come with a long-run guarantee:

- If you report 95% confidence intervals all your life, 95% of them will capture the true value
- You can't say anything about a particular interval; it either contains the truth or it doesn't

Visualization: http://rpsychologist.com/d3/Cl/

In SAS, you can find CIs for means and proportions (one and two groups) using the same PROCs we used for testing

# One proportion

- PROC FREQ gives us intervals
- Example: drug.csv
- If we want 99% CI for recovery rate...

```
PROC FREQ data = drug;
TABLES recovery / binomial riskdiff alpha = 0.01;
RUN;
```

alpha is "I - confidence level" [here conf. level = 0.99]

| Binomial Proportion  |        |  |  |  |
|----------------------|--------|--|--|--|
| recovery = 0         |        |  |  |  |
| Proportion           | 0.5667 |  |  |  |
| ASE                  | 0.0640 |  |  |  |
| 99% Lower Conf Limit | 0.4019 |  |  |  |
| 99% Upper Conf Limit | 0.7315 |  |  |  |
|                      |        |  |  |  |
| Exact Conf Limits    |        |  |  |  |
| 99% Lower Conf Limit | 0.3938 |  |  |  |
| 99% Upper Conf Limit | 0.7287 |  |  |  |

Based on normal approximation (you probably saw this one in intro stats)

Doesn't rely on normal approximation

### One mean

- PROC TTEST gives us CIs for means
- Example: speed dataset
- 95% confidence interval for max. speed

```
PROC TTEST data = speed alpha = 0.05;
    VAR speed;
RUN;
```

| Mean    | 95% CL Mean |         | Std Dev | 95% CL Std Dev |         |  |
|---------|-------------|---------|---------|----------------|---------|--|
| 90.7330 | 89.5166     | 91.9493 | 22.4157 | 21.5882        | 23.3098 |  |
|         |             |         |         |                |         |  |

### Two independent means

- Again, use PROC TTEST
- Example:
  - 99% CI for difference in max speed "female male"

```
PROC TTEST data = speed alpha = 0.01;
VAR speed;
CLASS gender;
```

RUN;

|                   | gender     | Method        | Mean     | 99% CL   | Mean    | Std Dev | 99% CL  | Std Dev |
|-------------------|------------|---------------|----------|----------|---------|---------|---------|---------|
| Equal<br>variance | female     |               | 87.0865  | 85.2087  | 88.9643 | 21.4179 | 20.1650 | 22.8244 |
|                   | male       |               | 97.9182  | 95.1278  | 100.7   | 22.6250 | 20.8068 | 24.7641 |
|                   | Diff (1-2) | Pooled        | -10.8317 | -14.1280 | -7.5353 | 21.8314 | 20.7804 | 22.9863 |
|                   | Diff (1-2) | Satterthwaite | -10.8317 | -14.1903 | -7.4730 |         |         |         |
| nequal            |            |               |          |          |         |         |         |         |

variance

# Two proportions

- Use PROC FREQ
- Example: 2drugs.csv
- 99% CI for difference in recovery rates

```
PROC FREQ data = twodrugs;
TABLES recovery*drug / chisq riskdiff alpha = 0.01;
RUN;
```

| Column 1 Risk Estimates                  |        |        |                        |                        |                                  |        |  |
|------------------------------------------|--------|--------|------------------------|------------------------|----------------------------------|--------|--|
|                                          | Risk   | ASE    | (Asympto<br>Confidence | otic) 99%<br>ce Limits | (Exact) 99%<br>Confidence Limits |        |  |
| Row 1 0.3571 0.0906 0.1239 0.5904 0.1477 |        |        |                        |                        |                                  |        |  |
| Row 2                                    | 0.5556 | 0.0956 | 0.3092                 | 0.8019                 | 0.3002                           | 0.7912 |  |
| Total                                    | 0.4545 | 0.0671 | 0.2816                 | 0.6275                 | 0.2831                           | 0.6340 |  |
| Difference -0.1984 0.1317 -0.5376 0.1408 |        |        |                        |                        |                                  |        |  |
| Difference is (Row 1 - Row 2)            |        |        |                        |                        |                                  |        |  |

# Cls and hypothesis tests

- **Example:** Want to know if the difference in math scores between men and women is significantly different than 0 at the 0.05
  - We can find a 95% confidence interval for the difference in scores "men – women" and check whether it contains 0
  - If the interval contains 0, don't reject the null hypothesis that there is no difference
  - If the interval doesn't contain 0, there are significant differences between men and women at the 0.05 significance level

# Cls and hypothesis tests

In general...

- Let  $\theta$  be an unknown feature of the DGM
- Suppose we know how to construct  $(I-\alpha)I00\%$  confidence intervals for  $\theta$
- We want to test  $H_0: \theta = \theta_0$  against  $Ha: \theta \neq \theta_0$  at the  $\alpha$  significance level
- We can do the test by checking whether  $\theta_0$  is contained in the interval
- If  $\theta_0$  is in the interval, don't reject the null; otherwise, reject the null

#### Pairwise comparisons

# Comparing more than 2 groups

- **Example:** We want to know if there are differences in average standardized testing scores for different socioeconomic statuses, using the hsb2 dataset
- How can we solve this problem?
- We know how to compare 2 groups, but now we have 3 groups: low, middle, and high socioeconomic status

#### Pairwise tests

- An approach is doing 3 pairwise two-sample tests
  - Low vs middle
  - Middle vs high
  - Low vs high
- If we do these 3 tests at the 0.05 significance level (each), the probability that there is at least one false positive (type I error) is roughly 0.14

#### Pairwise tests

- If we have k groups, there are k choose 2 pairwise comparisons
- If our significance level is 0.05, the probability that there's at least one false positive (FP) is
   Pr(FP ≥ 1) = 1 Pr(FP = 0) = 1 0.95<sup>(k choose 2)</sup>
- For example, if k = 5,  $Pr(FP \ge 1)$  is approximately 0.4



# A (not-so-great) fix

- A general solution to this "multiple testing" problem (which isn't specific for pairwise comparisons) is the following
- **Bonferroni**: If we're are doing N tests and want to ensure an overall false positive rate of 0.05, conduct the individual tests at the 0.05/N significance level
- Problem: Very stringent.
  - For example, if we have 5 groups, there are N = (5 choose 2) = 10 pairwise tests, so we should perform the tests at the 0.005 significance level, which is quite harsh

#### Tukey's honest significant difference

- If we're comparing the "means" (expectations) of groups with either / or
  - Approximately normal distributions
  - Sample sizes that are big enough, and the DGM has finite variance
- We can use a less stringent method called Tukey's honest significant difference (there are others)
- SAS will do it for us

• **Example:** compare average scores in standardized tests for low, middle and high socioeconomic status at an overall significance level  $\alpha = 0.01$ 

```
PROC ANOVA data = hsbnew;
CLASS ses;
MODEL avg = ses;
MEANS ses / Tukey alpha = 0.01;
RUN;
```

| Alpha                               | 0.01     |
|-------------------------------------|----------|
| Error Degrees of Freedom            | 197      |
| Error Mean Square                   | 59.57878 |
| Critical Value of Studentized Range | 4.16833  |

| Comparisons       | significant at the             | e 0.01 level are ir    | ndicated by ***. |     |
|-------------------|--------------------------------|------------------------|------------------|-----|
| ses<br>Comparison | Difference<br>Between<br>Means | Simultaneous 99<br>Lim |                  |     |
| high - middle     | 4.344                          | 0.553                  | 8.135            | *** |
| high - low        | 7.617                          | 3.152                  | 12.082           | *** |
| middle - high     | -4.344                         | -8.135                 | -0.553           | *** |
| middle - low      | 3.274                          | -0.784                 | 7.331            |     |
| low - high        | -7.617                         | -12.082                | -3.152           | *** |
| low - middle      | -3.274                         | -7.331                 | 0.784            |     |

If an interval doesn't contain 0, the difference between the group is significant

#### Correlation

### Sample correlation

- Sample correlation is useful for quantifying the degree of *linear* association between 2 quantitative variables
- It can be computed in different equivalent ways. For example, if we have variables X and Y that come in pairs:

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

• We can compute a z-score for each datum:

$$z_{x_i} = \frac{x_i - \overline{x}}{s_x}$$
  $z_{y_i} = \frac{y_i - \overline{y}}{s_y}$ 

• And find:

$$r = \frac{1}{n-1} (z_{x_1} z_{y_1} + z_{x_2} z_{y_2} + \dots + z_{x_n} z_{y_n})$$

### Correlation

 r is always between -I and I. The extremes are attained when there are perfect linear relationships (with negative and positive slope, respectively)

### Positive correlation (r > 0)



### Negative correlation (r < 0)



When  $x_i$  is above the mean of x, y is usually below the mean of  $y_i$ 

#### Correlation $\sim 0$



roughly the same positive & negative... will cancel out &  $r \sim 0$ 

$$r = \frac{1}{n-1} \left( z_{x_1} z_{y_1} + z_{x_2} z_{y_2} + \dots + z_{x_n} z_{y_n} \right)$$

# *r* measures the strength and direction of linear dependence:

• If there is a clear pattern, but it isn't linear... r is inadequate!



7.7 Match the correlation, Part I. Match the calculated correlations to the corresponding scatterplot.

(a) 
$$r = -0.7$$

(b) 
$$r = 0.45$$

(c) 
$$r = 0.06$$

(d) 
$$r = 0.92$$



### Correlations with SAS

- PROC CORR computes correlations for us
- To visualize the data, we can create a "scatterplot matrix" with PROC SGSCATTER
- **Example:** in the hsb2 dataset, suppose that we want to find the pairwise correlations between math, writing, reading, science, and social studies scores

```
PROC CORR data = hsbnew;
VAR math write socst science read;
RUN;
```

```
PROC SGSCATTER data = hsbnew;
matrix math write socst science read;
RUN;
```

| Pearson Correlation Coefficients, N = 200<br>Prob >  r  under H0: Rho=0 |         |         |         |         |         |  |  |
|-------------------------------------------------------------------------|---------|---------|---------|---------|---------|--|--|
|                                                                         | math    | write   | socst   | science | read    |  |  |
|                                                                         | 1.00000 | 0.61745 | 0.54448 | 0.63073 | 0.66228 |  |  |
| math                                                                    |         | <.0001  | <.0001  | <.0001  | <.0001  |  |  |
|                                                                         | 0.61745 | 1.00000 | 0.60479 | 0.57044 | 0.59678 |  |  |
| write                                                                   | <.0001  |         | <.0001  | <.0001  | <.0001  |  |  |
|                                                                         | 0.54448 | 0.60479 | 1.00000 | 0.46511 | 0.62148 |  |  |
| socst                                                                   | <.0001  | <.0001  |         | <.0001  | <.0001  |  |  |
|                                                                         | 0.63073 | 0.57044 | 0.46511 | 1.00000 | 0.63016 |  |  |
| science                                                                 | <.0001  | <.0001  | <.0001  |         | <.0001  |  |  |
|                                                                         | 0.66228 | 0.59678 | 0.62148 | 0.63016 | 1.00000 |  |  |
| read                                                                    | <.0001  | <.0001  | <.0001  | <.0001  |         |  |  |

