Intro to

Linear regression

STA9750 / Baruch College
Spring 2018

Goal: Find best line to predict y given x

Equation of a line: $y=b_{0}+b_{1} x$

Only need to specify b_{0} and b_{1}
For each data point x_{i}, y_{i} :
Observed values: y_{i}
Predicted values: $\hat{y}_{\mathrm{i}}=b_{0}+b_{1} x_{i}$
Prediction error: $e_{i}=y_{i}-\hat{y}_{i}$

Least squares line:

Minimize sum of squared prediction errors
That is, find \mathbf{b}_{0} and \mathbf{b}_{1} that minimize

$$
e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+e_{4}^{2}
$$

Galton's example

- In I886, Galton published a study where he compared heights of fathers and sons

Red line: least squares line
Blue line: $y=x$ [Son height $=$ Father height]

- If your father is tall, you're likely to be tall, but shorter than he is
- If your father is short, you're likely to be short, but taller than he is

That is, if your father is at the extremes, you're likely to "regress" to the overall population mean

Coefficient of determination: R^{2}

- R^{2} is commonly used for quantifying the "strength" of the least squares line and it is simply

$$
R^{2}=r^{2}
$$

- It can be interpreted as the fraction of the total variability in y that is explained by the regression line
- It is between 0 and I (perfect linear relationship)

$$
\begin{gathered}
\text { variability in y } \\
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{\substack{\text { squared pred. } \\
\text { errors }}}\left(y_{i}-\hat{y}_{i}\right)^{2}+\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} \\
R^{2}=\frac{\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}
\end{gathered}
$$

- It's easy to use: it goes from 0 to I
- Tempting to use it as a "goodness-of-fit" statistic
- However, it can be highly deceptive when the relationship between y and x isn't linear

Anscombe's quartet

All datasets have $\mathrm{R}^{2}=0.67$

... But vastly different stories!
https://en.wikipedia.org/wiki/Anscombe\'s_quartet

Inference?

- So far, we haven't made any distributional assumptions
- We just found the "best" line
- If we make some assumptions, we'll be able to find predictive intervals and do hypothesis tests

Simple linear regression

linear trend + normal noise

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}, \varepsilon_{i} \stackrel{\mathrm{iid}}{\sim} N\left(0, \sigma^{2}\right)
$$

Assumptions on ε_{i} :

- Independence
- Normality
- Homoscedasticity: equal variance across observations, which doesn't depend on x_{i}
Also, linearity: $E(Y \mid X)$ is a line

How do we check assumptions?

- Since

$$
\varepsilon_{i}=y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right) \stackrel{\mathrm{iid}}{\sim} N\left(0, \sigma^{2}\right)
$$

... then, if the assumptions are satisfied:

$$
e_{i}=y_{i}-\left(b_{0}+b_{1} x_{i}\right) \stackrel{\mathrm{iid}}{\approx} N\left(0, s^{2}\right)
$$

Assumptions:

I. Independence of outcomes y_{i} for i in I:n (given the x_{i}).
2. Normality
3. Homoscedasticity (equal variance across observations, which doesn't depend on x_{i})
4. Of course, linearity

How to check them:

I. Check if e_{i} are strongly correlated (e.g. serial correlation, if observations are taken over time)
2. Q-Q plot of e_{i}
3. Scatterplot of e_{i} vs $b_{0}+b_{1} x_{i}$
4. Scatterplot of e_{i} vs $b_{0}+b_{1} x_{i}$

Independence?

- Hard to check unless data are collected over time or there are clear "groups" or variables that were not included in the regression

Normality? Q-Q plot: see if it is roughly linear

Homoscedasticity?

Constant spread in scatterplot of $e_{i} v s b_{0}+b_{1} x_{i}$

OK

Residuals vs Fitted

Bad

Linearity? No obvious patterns in scatterplot of $e_{i} v s b_{0}+b_{1} x_{i}$

OK

Bad

Transformations

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}, \varepsilon_{i} \stackrel{\text { iid }}{\sim} N\left(0, \sigma^{2}\right)
$$

- What should we do if the relationship in our scatterplot doesn't look linear?
- Take y and x to be functions (transformations) of the original variables of interest
- Most popular transformations:
- log, square-root, square

Example:

- In "animals.csv", we want to predict brain weights given body weights
- Original relationship doesn't look linear

- Goal: find functions f and g such that
$f\left(\right.$ brain weight $\left._{i}\right)=\beta_{0}+\beta_{\mathrm{I}}$ g(body weight $\left.\mathrm{t}_{\mathrm{i}}\right)+\varepsilon_{\mathrm{i}}$
- If $f(x)=g(x)=\log (x)$..

