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Goal: Find best line to predict y given x

Equation of a line:y = b, + b, x

Only need to specify b, and b,

For each data point x, y;:
Observed values: y;

Predicted values:y, = b, + b, x;
Prediction error:e, =y, - y,

Least squares line:
Minimize sum of squared prediction errors
That is, find by and b, that minimize

e’2 + e22 + e32 + e42




Galton’s example

* In 1886, Galton published a study where he
compared heights of fathers and sons



Red line: least squares line

x [Son height = Father height]

Blue line:y
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* If your father is tall, you're likely to be tall, but
shorter than he is

* If your father is short, you're likely to be short, but
taller than he is

That is, if your father is at the extremes, you’re
likely to “regress™ to the overall population mean



Coefficient of determination: R?

+ R* is commonly used for quantifying the
“strength” of the least squares line and it is simply

R2:T2

* It can be interpreted as the fraction of the total
variability in y that is explained by the regression
line

* It is between 0 and | (perfect linear relationship)



variability in y squared pred. variability in

errors predictions
n n n
—\2 A\ 2 ~ _\ 2
Y wi—9'= wi—9)+> (§i—9)
1=1 1=1 1=1

* It’s easy to use:it goes from O to |

* Tempting to use it as a “goodness-of-fit”
statistic

* However, it can be highly deceptive when the
relationship between y and x isn’t linear



Anscombe’s quartet
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All datasets have
R2=0.67

... But vastly
different stories!

https://en.wikipedia.org/wiki/Anscombe?%27s_quartet



https://en.wikipedia.org/wiki/Anscombe's_quartet

Inference?

* So far, we haven’t made any distributional
assumptions

* We just found the “best” line

* If we make some assumptions, we’ll be able to find
predictive intervals and do hypothesis tests



Simple linear regression Assumptions on &

linear trend + normal noise * Independence

i 5 * Normality
yi = Bo + brxi + €4, €~ N(0,07) * Homoscedasticity: equal variance

across observations, which doesn’t
depend on x;

Also, linearity: E(Y | X) is a line

Yy
E(Y) = piz + Bo
N(Brxs +50,02)
I N(Biz2 + Bo, 0?)
N(B1z1 + Bo,0?)
0 T T2 T3 &

Source: https://stats.libretexts.org/Textbook Maps/Introductory Statistics/Book%3A Introductory Statistics (Shafer and Zhang)



https://stats.libretexts.org/Textbook_Maps/Introductory_Statistics/Book:_Introductory_Statistics_(Shafer_and_Zhang)

How do we check assumptions?

e Since
iid
ei = Yi — (Bo + Brxi) ~ N(OaUZ)

... then, if the assumptions are satisfied:

€; — Y; — (bQ + blili‘z) I"rléi N(O, 82)

Assumptions: How to check them:
|. Independence of outcomes y; for i |. Check if e; are strongly correlated (es.
in | ‘n (given the X-) serial correlation, if observations are taken over time)
: i)
2. Normality Q-Q plot of &

Scatterplot of e; vs bgt+b)x;
Scatterplot of e; vs byt+b)x;

HwN

3. Homoscedasticity (equal variance
across observations, which doesn’t

depend on x;)
4. Of course, linearity



Independence!?

* Hard to check unless data are collected over time
or there are clear “groups” or variables that were
not included in the regression
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Normality? Q-Q plot:see if it is roughly linear
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Im(y ~x) Source Of bad QQ_DIOtS:Im(Iogex~ceqaCE+ceanIR+nepaCE+nepaEIS+nepaFONSI+CDFW+ACOE
https://stats.stackexchange.com/questions/| 60562/what-to-do-if-
residual-plot-looks-gsood-but-qqg-plot-doesnt-after-transforming-t



https://stats.stackexchange.com/questions/160562/what-to-do-if-residual-plot-looks-good-but-qq-plot-doesnt-after-transforming-t

H OmoscedaSt|C|t)l? Constant spread in scatterplot of e;vs by*b,x;

Residuals

OK

Residuals vs Fitted

Bad

Residuals vs Fitted
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Li n ea ritY? No obvious patterns in scatterplot of e; vs bytbx;

Residuals

OK

Residuals vs Fitted
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Transformations

iid

yi = Bo + P1xzi + €i, € ~ N(0,0%)

* What should we do if the relationship in our
scatterplot doesn’t look linear?

* Take y and x to be functions (transformations) of
the original variables of interest

* Most popular transformations:
* log, square-root, square



Example:
* In*animals.csv”’, we want to predict brain weights given
body weights
* Oiriginal relationship doesn’t look linear

6000
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4000

0 20000 40000 60000 80000

* Goal:find functions f and g such that
f(brain weight;) = B, + B, g(body weight)) + €



* If f(x) = g(x)
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