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Goal: Find best line to predict y given x

Equation of a line: y = b0 + b1 x

Only need to specify b0 and b1

For each data point xi, yi: 
Observed values: yi
Predicted values: ŷi = b0 + b1 xi
Prediction error: ei = yi - ŷi

Least squares line:
Minimize sum of squared prediction errors
That is, find b0 and b1 that minimize
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Galton’s example

• In 1886, Galton published a study where he 
compared heights of fathers and sons



Red line: least squares line
Blue line: y = x [Son height = Father height]



• If your father is tall, you’re likely to be tall, but 
shorter than he is
• If your father is short, you’re likely to be short, but 

taller than he is

That is, if your father is at the extremes, you’re 
likely to “regress” to the overall population mean



Coefficient of determination: R2

• is commonly used for quantifying the 
“strength” of the least squares line and it is simply

• It can be interpreted as the fraction of the total 
variability in y that is explained by the regression 
line
• It is between 0 and 1 (perfect linear relationship)



squared pred.
errors

variability in y variability in
predictions

• It’s easy to use: it goes from 0 to 1
• Tempting to use it as a “goodness-of-fit” 

statistic 
• However, it can be highly deceptive when the 

relationship between y and x isn’t linear



Anscombe’s quartet

All datasets have 
R2 = 0.67

… But vastly 
different stories!

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

https://en.wikipedia.org/wiki/Anscombe's_quartet


Inference?

• So far, we haven’t made any distributional 
assumptions
• We just found the “best” line
• If we make some assumptions, we’ll be able to find 

predictive intervals and do hypothesis tests 



Simple linear regression Assumptions on !":
• Independence
• Normality
• Homoscedasticity: equal variance 

across observations, which doesn’t 
depend on xi

Also, linearity: E(Y | X) is a line

≈

Source: https://stats.libretexts.org/Textbook_Maps/Introductory_Statistics/Book%3A_Introductory_Statistics_(Shafer_and_Zhang)

linear trend + normal noise

https://stats.libretexts.org/Textbook_Maps/Introductory_Statistics/Book:_Introductory_Statistics_(Shafer_and_Zhang)


How do we check assumptions?

• Since

… then, if the assumptions are satisfied:

Assumptions:
1. Independence of outcomes yi for i

in 1:n (given the xi).
2. Normality
3. Homoscedasticity (equal variance 

across observations, which doesn’t 
depend on xi)

4. Of course, linearity

How to check them:
1. Check if ei are strongly correlated (e.g. 

serial correlation, if observations are taken over time)

2. Q-Q plot of ei

3. Scatterplot of ei vs b0+b1xi
4. Scatterplot of ei vs b0+b1xi



Independence?
• Hard to check unless data are collected over time 

or there are clear “groups” or variables that were 
not included in the regression



Normality? Q-Q plot: see if it is roughly linear

Source of bad QQ-plots: 
https://stats.stackexchange.com/questions/160562/what-to-do-if-
residual-plot-looks-good-but-qq-plot-doesnt-after-transforming-t

OK Bad

https://stats.stackexchange.com/questions/160562/what-to-do-if-residual-plot-looks-good-but-qq-plot-doesnt-after-transforming-t


Homoscedasticity? Constant spread in scatterplot of ei vs b0+b1xi

OK Bad



Linearity?

OK Bad

No obvious patterns in scatterplot of ei vs b0+b1xi



Transformations

• What should we do if the relationship in our 
scatterplot doesn’t look linear?
• Take y and x to be functions (transformations) of 

the original variables of interest
• Most popular transformations: 
• log, square-root, square

≈



Example: 
• In “animals.csv”, we want to predict brain weights given 

body weights
• Original relationship doesn’t look linear

• Goal: find functions f and g such that
f(brain weighti) = β0 + β1 g(body weighti) + εi



• If f(x) = g(x) = log(x)…


