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Confidence intervals and hypothesis tests

I’m assuming we’re all familiar with confidence intervals and hypothesis testing. If you need a refresher,
there are many good resources online. I think the videos on Khan Academy1 are quite good, but feel free
to consult other sources (let me know if you find any other good and freely available sources, so that I can
recommend them to other students in the future).

One normal mean

A group of scientists recorded some measurements that are stored in the vector x:

x = c(1,4,2,3,6,9,1,3,9,3)

We can visualize the data using a histogram:

library(tidyverse)
qplot(x)

1https://www.khanacademy.org/math/statistics-probability
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We can do t-tests and find confidence intervals for the population mean µ with the function t.test.

For example, if we want to find a 99% confidence interval for the mean:

t.test(x, conf.level = 0.99)

##
## One Sample t-test
##
## data: x
## t = 4.3789, df = 9, p-value = 0.001774
## alternative hypothesis: true mean is not equal to 0
## 99 percent confidence interval:
## 1.057163 7.142837
## sample estimates:
## mean of x
## 4.1

We can change conf.level to any confidence level that we want. If we don’t specify anything, the default
is 95% confidence.

As you can see, t.test gives us a p-value. It is a p-value for the test H0 : µ = 0 against H1 : µ 6= 0. If
we want to change the hypothesized value under the null to some value that is not 0, we can change the
argument mu of t.test. If we want to change the alternative to “less than” or “greater than”, instead of
“not equal to”, we can set alternative to less or greater, respectively.

For instance, if we want to test H0 : µ = 5 against H1 : µ < 5, the following R code will do it for us:
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t.test(x, mu = 5, alternative = ’less’)

##
## One Sample t-test
##
## data: x
## t = -0.96123, df = 9, p-value = 0.1808
## alternative hypothesis: true mean is less than 5
## 95 percent confidence interval:
## -Inf 5.816352
## sample estimates:
## mean of x
## 4.1

As always, we can get more information about the function if we type in ?t.test.

Two independent normal means

A pharmaceutical is interested in knowing whether their new treatment is significantly different than the
current gold standard. They collected a sample of 40 individuals: 20 of them were assigned the new treatment,
and 20 of them were assigned the current treatment. The outcome is on an ordinal scale that goes from 0
to 100, where 0 is “bad” and 100 is “great”. We read in the data:

pharma = read.csv("https://vicpena.github.io/sta9750/fall18/pharma.csv")

The data has 2 columns: group and outcome:

summary(pharma)

## group outcome
## Length:40 Min. : 80.00
## Class :character 1st Qu.: 89.00
## Mode :character Median : 92.50
## Mean : 92.30
## 3rd Qu.: 98.25
## Max. :100.00

If we want to get summaries by group (means, standard deviations, etc.), there are different ways to do it.
Here’s one using group_by and summarize:

library(tidyverse)
pharma %>%

group_by(group) %>%
summarize(avg=mean(outcome), stdev= sd(outcome))

## # A tibble: 2 x 3
## group avg stdev
## <chr> <dbl> <dbl>
## 1 current 95.6 5.02
## 2 new 89.0 5.67

3



If we want to plot the outcomes by group, we can create a boxplot:

qplot(y = outcome, x = group, data = pharma) + geom_boxplot()
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If we want to create histograms of outcomes by groups, here’s an option using facet_grid:

ggplot(pharma) +
aes(x = outcome) +
geom_histogram() +
facet_grid(group ~ .)

## ‘stat_bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.
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The pharmaceutical is interested in knowing whether the population means of the health outcomes are
different at the 0.01 significance level. That is, if µC and µN are the population means of outcome for
the current and new treatments, respectively, the pharmaceutical wants to test H0 : µC = µN against
H1 : µC 6= µN at the 0.01 significance level.
We can do a two-sample t-test with t.test:

t.test(outcome ~ group, conf.level = 0.99, data = pharma)

##
## Welch Two Sample t-test
##
## data: outcome by group
## t = 3.8381, df = 37.451, p-value = 0.0004622
## alternative hypothesis: true difference in means is not equal to 0
## 99 percent confidence interval:
## 1.904267 11.095733
## sample estimates:
## mean in group current mean in group new
## 95.55 89.05

We can change the hypothesized difference in means under the null with the argument mu and we can change
the alternative to “less than” or “greater than” with the argument alternative, just as we did with the
one-sample t-test we covered in the previous section.
The treatments are significantly different at the 0.01 significance level (the p-value is less than 0.01 and the
99% confidence interval doesn’t cover 0). However, we wouldn’t recommend marketing this new drug: the
new treatment is significantly worse than the current treatment.
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One proportion

We can find confidence intervals and p-values for testing proportions using the function prop.test. Let’s
work through a simple example.

(Source: Openintro) Do people ever regret getting a tattoo? In a 2012 poll by Harris Interactive, 59 out of
423 respondents said yes. Based on the data in this study, find a 99% confidence interval for p, the proportion
of people with tattoos who regret getting one.

As we mentioned, the command we need is prop.test. Here, the code we need is

prop.test(59, 423, conf.level = 0.99)

##
## 1-sample proportions test with continuity correction
##
## data: 59 out of 423, null probability 0.5
## X-squared = 218.48, df = 1, p-value < 2.2e-16
## alternative hypothesis: true p is not equal to 0.5
## 99 percent confidence interval:
## 0.1006219 0.1897715
## sample estimates:
## p
## 0.1394799

First, we specify the number of events or “successes”. Here, it’s 59 because that’s the number of people
who regret getting a tattoo in our sample. Then, we specify the sample size, which in this case is 423.
Finally, we specify our confidence level. If we didn’t add conf.level = 0.99, R would assume we want
95% confidence. We can also see that the output provides a p-value for testing the hypothesis H0 : p = 0.5
against H1 : p 6= 0.5.

If we want to change the null value from 0.5 to, say, 0.2 (as an example) we would add in p = 0.2 to
our prop.test command. Also, if we wanted to change the alternative hypothesis from “not equal to” to
“less” or “greater”, we add that in using alternative in our prop.test statement. For the sake of giving
a concrete example, if we wanted to test H0 : p = 0.2 against H1 : p < 0.2, we’d run:

prop.test(59, 423, p = 0.2, alternative = "less")

##
## 1-sample proportions test with continuity correction
##
## data: 59 out of 423, null probability 0.2
## X-squared = 9.3087, df = 1, p-value = 0.00114
## alternative hypothesis: true p is less than 0.2
## 95 percent confidence interval:
## 0.0000000 0.1707564
## sample estimates:
## p
## 0.1394799

The p-value is 0.00114, which is significant at the usual 0.05 threshold.
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Two proportions

(Source: Openintro) In a study about online dating, 9 out of 40 males lied about their age and 5 out of 40
females lied about their age. Find a 95% confidence interval for the difference (% of men who lie about their
age) - (% of women who lie about their age).

The function prop.test allows us to find confidence intervals and p-values for comparing two proportions.
The code we need to solve this problem is:

prop.test(c(9, 5), c(40, 40), conf.level = 0.95)

##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(9, 5) out of c(40, 40)
## X-squared = 0.77922, df = 1, p-value = 0.3774
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.0900768 0.2900768
## sample estimates:
## prop 1 prop 2
## 0.225 0.125

First, we specify the number of events or “successes” in the two groups: here, we have 9 men and 5 women
lying. Then, we specify the sample sizes of the groups, which is 40 for both men and women. Just as we
had in the case where we only had one group, we can change the confidence level to, say, 99% confidence,
by adding in conf.level = 0.99 to the statement. We can also change the alternative hypothesis using
alternative in the same way we saw for prop.test. For example, if we wanted our alternative hypothesis
to be that men lie more than women, we’d write:

prop.test(c(9, 5), c(40, 40), alternative = "greater")

##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(9, 5) out of c(40, 40)
## X-squared = 0.77922, df = 1, p-value = 0.1887
## alternative hypothesis: greater
## 95 percent confidence interval:
## -0.06353681 1.00000000
## sample estimates:
## prop 1 prop 2
## 0.225 0.125

The p-value is 0.1887, which is not significant at the 0.05 significance level.

χ2-tests of independence for categorical variables

The hsb2 dataset in library(openintro) has standardized test scores and background information for a
sample of 200 high-schoolers. Let’s read in the data:
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library(openintro)
data(hsb2)

If you want more information about the dataset, you can find it by typing ?hsb2.

If we want to get a quick look at the variables in the dataset, we can use str:

str(hsb2)

## tibble [200 x 11] (S3: tbl_df/tbl/data.frame)
## $ id : int [1:200] 70 121 86 141 172 113 50 11 84 48 ...
## $ gender : chr [1:200] "male" "female" "male" "male" ...
## $ race : chr [1:200] "white" "white" "white" "white" ...
## $ ses : Factor w/ 3 levels "low","middle",..: 1 2 3 3 2 2 2 2 2 2 ...
## $ schtyp : Factor w/ 2 levels "public","private": 1 1 1 1 1 1 1 1 1 1 ...
## $ prog : Factor w/ 3 levels "general","academic",..: 1 3 1 3 2 2 1 2 1 2 ...
## $ read : int [1:200] 57 68 44 63 47 44 50 34 63 57 ...
## $ write : int [1:200] 52 59 33 44 52 52 59 46 57 55 ...
## $ math : int [1:200] 41 53 54 47 57 51 42 45 54 52 ...
## $ science: int [1:200] 47 63 58 53 53 63 53 39 58 50 ...
## $ socst : int [1:200] 57 61 31 56 61 61 61 36 51 51 ...

Suppose that a team of social scientists want to test whether the distribution of ses depends on race. First,
we can create a table:

table(hsb2$ses, hsb2$race)

##
## african american asian hispanic white
## low 11 3 9 24
## middle 6 5 11 73
## high 3 3 4 48

It’s hard to see whether race depends on ses by looking at the raw counts. We can create columns with row
and column percentages with prop.table. First, we save the original table with raw counts in a variable.

tab = table(hsb2$ses, hsb2$race)

Then, we can find proportion tables with row and column percentages:

round(prop.table(tab, 1), 3)

##
## african american asian hispanic white
## low 0.234 0.064 0.191 0.511
## middle 0.063 0.053 0.116 0.768
## high 0.052 0.052 0.069 0.828

round(prop.table(tab, 2), 3)
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##
## african american asian hispanic white
## low 0.550 0.273 0.375 0.166
## middle 0.300 0.455 0.458 0.503
## high 0.150 0.273 0.167 0.331

We can test whether ses and race are independent using a χ2-test. The null hypothesis is that the variables
are independent and the alternative hypothesis is that the variables are dependent. The code below runs a
χ2-test:

chisq.test(tab)

##
## Pearson’s Chi-squared test
##
## data: tab
## X-squared = 18.516, df = 6, p-value = 0.005064

Note that the input is the table tab. The p-value is significant at the 0.05 significance level, so we reject the
hypothesis that ses and race are independent at that significance level.

Pairwise comparisons of multiple normal means: Tukey HSD

Let’s, once again, work with hsb2 in library(openintro).

Suppose that we want to compare the average scores in math among the levels of race doing pairwise tests,
using Tukey HSD. The code is simple:

mod = aov(math~race, data=hsb2)
TukeyHSD(mod)

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = math ~ race, data = hsb2)
##
## $race
## diff lwr upr p adj
## asian-african american 10.5227273 1.838424 19.207030 0.0104479
## hispanic-african american 0.6666667 -6.337737 7.671071 0.9947149
## white-african american 7.2224138 1.704074 12.740754 0.0046342
## hispanic-asian -9.8560606 -18.279657 -1.432465 0.0145446
## white-asian -3.3003135 -10.535462 3.934835 0.6389480
## white-hispanic 6.5557471 1.457520 11.653975 0.0056430

We can check whether the pairwise differences are significant by checking the p-values. We can change the
confidence level of the corrected intervals with the argument conf.level. For example, if we want 99%
confidence intervals instead:

TukeyHSD(mod, conf.level = 0.99)
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## Tukey multiple comparisons of means
## 99% family-wise confidence level
##
## Fit: aov(formula = math ~ race, data = hsb2)
##
## $race
## diff lwr upr p adj
## asian-african american 10.5227273 -0.04702112 21.0924757 0.0104479
## hispanic-african american 0.6666667 -7.85846043 9.1917938 0.9947149
## white-african american 7.2224138 0.50598962 13.9388380 0.0046342
## hispanic-asian -9.8560606 -20.10849978 0.3963786 0.0145446
## white-asian -3.3003135 -12.10628138 5.5056544 0.6389480
## white-hispanic 6.5557471 0.35064587 12.7608484 0.0056430
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