
Data wrangling

Víctor Peña

Contents

Importing and exporting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Data subsetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Sorting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Type conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Reformatting datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Identifying a maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Joining datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Importing and exporting data

R can read data in many different formats and it has several functions that can help us with that. The func-
tions themselves have numerous parameters and options that can be used to read messy data correctly. I am
not going to cover the ins and outs of that (it’s rather tedious). If you’re interested in learning more, I recom-
mend the following article: https://www.datacamp.com/community/tutorials/r-data-import-tutorial.

My personal workflow for importing data is (1) clean the data using some spreadsheet software (Excel,
Numbers, Google Sheets) and then (2) read the spreadsheet using the “Import Dataset” option in RStudio
(top-right corner).

However, if the data are nicely formatted in *.csv or plain text format, using the functions read.csv and
read.table is relatively painless.

For example, you can read depression.csv (hosted on my website) with the instruction

depression = read.csv("http://vicpena.github.io/sta9750/fall18/depression.csv")

If the dataset doesn’t have column names, you only need to add header = FALSE. For example, suppose
that we want to read in the following dataset: http://users.stat.ufl.edu/~winner/data/femrole.dat.
It doesn’t have variable names. We can read it in with

femrole = read.table("http://users.stat.ufl.edu/~winner/data/femrole.dat", header=F)

Exporting data with R is easy. If we want to export an existing data.frame to a *.csv file (which can be
opened with Excel, Numbers, or any statistical package), we can use the function write.csv. For example,
if we want to export the iris dataset into a file named iris.csv in the working directory:
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data(iris)
write.csv(iris, file = "./iris.csv")

If you want the file to be saved somewhere else, you can change ./ by any path you want.

Another option is saving the workspace. That is, creating a file that has all the objects that we are currently
working with (variables, data.frames, etc.). The function that allows us to do that is save. If we want
to save all the variables and objects, we can simply type save(file='<path>/<filename>.RData'), where
<path> is the path where the file will be saved and <filename> is the filename. We can also save only a
subset of the variables. For example, suppose we want to save 2 objects named var1 and df. The command
save(var1, df, file = '<path>/<filename>.RData') will do that for us.

Data subsetting

In this section, we’ll cover how to subset variables and rows of datasets (mainly data.frames). We’ll cover
2 different ways of filtering. We’ll use the “traditional” way to do that (which doesn’t require any extra
libraries) and we’ll use functions in library(tidyverse) (which are faster in big datasets, cleaner, and more
“intuitive”).

Subsetting variables

We saw some of that in the previous chapter. Let’s load the iris dataset.

data("iris")
str(iris)

## ’data.frame’: 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

If we want to create a subset that contains, say, the first, the second, and the fifth columns, it’s as easy as
typing

sub1 = iris[,c(1,2,5)]
str(sub1)

## ’data.frame’: 150 obs. of 3 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

We can also create subsets by specifying which columns we want to remove. For example,

sub2 = iris[,-c(1,2,5)]
str(sub2)

## ’data.frame’: 150 obs. of 2 variables:
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
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contains all the columns in except the first, the second, and the fifth.

If we want to access specific columns of iris, we can use $ followed by the name of the variable. For
example, if we want to take a look at Species:

iris$Species

## [1] setosa setosa setosa setosa setosa setosa
## [7] setosa setosa setosa setosa setosa setosa
## [13] setosa setosa setosa setosa setosa setosa
## [19] setosa setosa setosa setosa setosa setosa
## [25] setosa setosa setosa setosa setosa setosa
## [31] setosa setosa setosa setosa setosa setosa
## [37] setosa setosa setosa setosa setosa setosa
## [43] setosa setosa setosa setosa setosa setosa
## [49] setosa setosa versicolor versicolor versicolor versicolor
## [55] versicolor versicolor versicolor versicolor versicolor versicolor
## [61] versicolor versicolor versicolor versicolor versicolor versicolor
## [67] versicolor versicolor versicolor versicolor versicolor versicolor
## [73] versicolor versicolor versicolor versicolor versicolor versicolor
## [79] versicolor versicolor versicolor versicolor versicolor versicolor
## [85] versicolor versicolor versicolor versicolor versicolor versicolor
## [91] versicolor versicolor versicolor versicolor versicolor versicolor
## [97] versicolor versicolor versicolor versicolor virginica virginica
## [103] virginica virginica virginica virginica virginica virginica
## [109] virginica virginica virginica virginica virginica virginica
## [115] virginica virginica virginica virginica virginica virginica
## [121] virginica virginica virginica virginica virginica virginica
## [127] virginica virginica virginica virginica virginica virginica
## [133] virginica virginica virginica virginica virginica virginica
## [139] virginica virginica virginica virginica virginica virginica
## [145] virginica virginica virginica virginica virginica virginica
## Levels: setosa versicolor virginica

What we just covered is the traditional way of subsetting variables with R. With library(tidyverse), we
can use the command select. First, let’s load the library (if you don’t have it, you can install it with the
command install.packages("tidyverse")).

library(tidyverse)

The following command creates a subset that contains the first, the second, and the fifth variables,

sub3 = iris %>% select(1,2,5)
str(sub3)

## ’data.frame’: 150 obs. of 3 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

There’s a %>% separating iris and select. The operator %>% is what we call a “pipe”. It looks odd at first,
but it ends up being pretty convenient.

We can easily select variables using their names:
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sub4 = iris %>% select(Sepal.Length, Sepal.Width, Species)
head(sub4)

## Sepal.Length Sepal.Width Species
## 1 5.1 3.5 setosa
## 2 4.9 3.0 setosa
## 3 4.7 3.2 setosa
## 4 4.6 3.1 setosa
## 5 5.0 3.6 setosa
## 6 5.4 3.9 setosa

As you can imagine, we can also create subsets by specifying which variables we want to exclude:

sub5 = iris %>% select(-c(1,2,5))
str(sub5)

## ’data.frame’: 150 obs. of 2 variables:
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

sub6 = iris %>% select(-c(Sepal.Length, Sepal.Width, Species))
str(sub6)

## ’data.frame’: 150 obs. of 2 variables:
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

Subsetting rows

We can subset rows by indicating which row numbers we want to keep (or exclude). For example, we can
create a subset with the first, the thirtieth, and the fiftieth observations in the iris dataset as follows

sub1 = iris[c(1, 30, 50),]
str(sub1)

## ’data.frame’: 3 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.7 5
## $ Sepal.Width : num 3.5 3.2 3.3
## $ Petal.Length: num 1.4 1.6 1.4
## $ Petal.Width : num 0.2 0.2 0.2
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1

And if we want to create a subset that includes all but the first, the thirtieth and the fiftieth observations:

sub2 = iris[-c(1, 30, 50),]
str(sub2)

## ’data.frame’: 147 obs. of 5 variables:
## $ Sepal.Length: num 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 5.4 ...
## $ Sepal.Width : num 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 3.7 ...
## $ Petal.Length: num 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 0.2 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
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This is alright, but not very useful in practice. We’re usually interested in subsets of rows that satisfy a
certain condition. For example, we might be interested in creating a subset that only contains flowers of the
setosa species. The following commands will do that for us

cond1 = (iris$Species == ’setosa’)
str(cond1)

## logi [1:150] TRUE TRUE TRUE TRUE TRUE TRUE ...

sub3 = iris[cond1,]
str(sub3)

## ’data.frame’: 50 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

In the first command, we create a logical type variable that takes on the value TRUE if Species is equal
to setosa and FALSE otherwise (note that there are 2 equal signs between iris$Species and setosa). In
the second command, we use the logical variable to filter the iris dataset. We can use a similar strategy to
create all sorts of subsets according to logical conditions. The operators are

• ==: equal to

• !=: not equal to

• >: greater than

• <: less than

• >=: greater or equal to

• <=: less than or equal to

For example, we can create a subset that contains only observations whose Sepal.Length is greater than 5

cond2 = (iris$Sepal.Length > 5)
sub4 = iris[cond2,]

And we can create a subset that contain all the observations whose Species isn’t equal to setosa with

cond3 = iris$Species != ’setosa’
sub6 = iris[cond3,]
str(sub6)

## ’data.frame’: 100 obs. of 5 variables:
## $ Sepal.Length: num 7 6.4 6.9 5.5 6.5 5.7 6.3 4.9 6.6 5.2 ...
## $ Sepal.Width : num 3.2 3.2 3.1 2.3 2.8 2.8 3.3 2.4 2.9 2.7 ...
## $ Petal.Length: num 4.7 4.5 4.9 4 4.6 4.5 4.7 3.3 4.6 3.9 ...
## $ Petal.Width : num 1.4 1.5 1.5 1.3 1.5 1.3 1.6 1 1.3 1.4 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 2 2 2 2 2 2 2 2 2 2 ...
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Logical conditions can be combined with “and”, “or”, and “not” operators, which in R are:

• &: and

• |: or

• !: not

For example, we can create a subset that contains setosas whose Sepal.Length is greater than 5 with

cond4 = (iris$Species == ’setosa’)&(iris$Sepal.Length > 5)
sub7 = iris[cond4,]
str(sub7)

## ’data.frame’: 22 obs. of 5 variables:
## $ Sepal.Length: num 5.1 5.4 5.4 5.8 5.7 5.4 5.1 5.7 5.1 5.4 ...
## $ Sepal.Width : num 3.5 3.9 3.7 4 4.4 3.9 3.5 3.8 3.8 3.4 ...
## $ Petal.Length: num 1.4 1.7 1.5 1.2 1.5 1.3 1.4 1.7 1.5 1.7 ...
## $ Petal.Width : num 0.2 0.4 0.2 0.2 0.4 0.4 0.3 0.3 0.3 0.2 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

We can create a subset that contains observations that are not setosas or whose Sepal.Width is less than
or equal to 4 with

cond5 = !(iris$Species == ’setosa’)|(iris$Sepal.Width <= 4)
sub8 = iris[cond5,]
str(sub8)

## ’data.frame’: 147 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

We could’ve also written iris$Species != 'setosa'.

This is the traditional way of subsetting rows with R. library(tidyverse) has the function filter, which
does the same thing with a cleaner syntax.

For example, we can create a subset that contains setosas whose Sepal.Length is greater than 5 as follows

sub1 = iris %>% filter(Species == ’setosa’ & Sepal.Length > 5)

And we can create a subset that contains flowers whose Species isn’t setosa or whose Sepal.Width is less
than or equal to 4

sub2 = iris %>% filter(Species != ’setosa’ | Sepal.Width <= 4)

As you can see, with filter we don’t have to type in iris$ whenever we want to specify a condition for
variables in iris.

We can combine select and filter statements. For example, we can create a subset that excludes Species
and only contains setosas as follows
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sub3 = iris %>% filter(Species == ’setosa’) %>% select(-Species)
str(sub3)

## ’data.frame’: 50 obs. of 4 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

The order in which filter and select appear matters. If we typed the select statement first, we would
get an error because when R tries to apply the filter, Species has already been excluded.

Exercises
Read in the hsb2 dataset.

hsb2 = read.csv("http://vicpena.github.io/sta9750/spring19/hsb2.csv")

Answer the following questions:

1. What is the average ‘math‘ score in the dataset?

2. What is the average ‘math‘ score for those who scored 50 or greater in ‘read‘? Is it greater or smaller
than the overall mean? Think about the result.

3. What is the average ‘read‘ score in the dataset?

4. What is the average ‘read‘ score for those who scored 50 or greater in ‘math‘? Is it greater or smaller
than the overall mean? Compare your result to your answer in part 2.

5. What is the average difference in ‘math‘ scores between individuals whose race is ‘white‘ and those
whose race is not ‘white‘?

6. Now, consider only those students whose ‘ses‘ is ‘high‘. What is the average difference in ‘math‘ scores
between individuals whose race is ‘white‘ and those whose race is not ‘white‘?

7. What is the percentage of individuals in the sample whose ‘race‘ is ‘white‘?

8. What is the percentage of individuals of high ‘ses‘ that are ‘white‘?

9. What percentage of students of low ‘ses‘ went to ‘public‘ schools?

10. What is the percentage of students with a ‘math‘ score greater than 50 who went to ‘public‘ schools?

Missing data

Sometimes, our datasets have missing values. In R, missing values are marked as NA.

For example, we can a vector with a missing value as follows

x = c(1:5, NA)
x

## [1] 1 2 3 4 5 NA

When we have missing values, we have to be careful. For example, if we try to take the average of x with
mean:
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mean(x)

## [1] NA

In general, arithmetic operations with NAs return NAs:

0+NA

## [1] NA

3*NA

## [1] NA

5/NA

## [1] NA

Missing values are ignored in tables. For example:

animals = c("cat", "cat", "dog", "cat", "dog", NA, "dog")
table(animals)

## animals
## cat dog
## 3 3

The output doesn’t tell us that there is a missing value in the vector! This carries over to prop.tables as
well.

The function is.na can be used to filter missing values. For example,

cond = is.na(x)
cond

## [1] FALSE FALSE FALSE FALSE FALSE TRUE

x = x[!cond]
x

## [1] 1 2 3 4 5

For data.frames, the functions complete.cases and na.omit are useful.

Let’s load the airquality dataset, which is built-in in ‘R“.

data(airquality)

The dataset has some air quality measurements that were taken in NYC from May to September in 1973
(see ?airquality for more details). The dataset has some missing values
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summary(airquality)

## Ozone Solar.R Wind Temp
## Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00
## 1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00
## Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
## Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88
## 3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00
## Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00
## NA’s :37 NA’s :7
## Month Day
## Min. :5.000 Min. : 1.0
## 1st Qu.:6.000 1st Qu.: 8.0
## Median :7.000 Median :16.0
## Mean :6.993 Mean :15.8
## 3rd Qu.:8.000 3rd Qu.:23.0
## Max. :9.000 Max. :31.0
##

There are 37 missing Ozone readings and 7 missing values in Solar.R. The function complete.cases, when
applied to airquality, will create a logical vector whose values will be TRUE if the observation is “complete”
(i.e., doesn’t have any missing values) and FALSE if there is at least one variable with a missing value.

We can create a new dataset called aircomp that only contains complete observations as follows

aircomp = airquality[complete.cases(airquality),]

The command above is equivalent to

aircomp = na.omit(aircomp)

We are covering complete.cases because having a logical vector can help us identify the observations
that have missing values. Indeed, we can filter the observations that are not complete cases, that is:

miss = airquality[!complete.cases(airquality),]
head(miss)

## Ozone Solar.R Wind Temp Month Day
## 5 NA NA 14.3 56 5 5
## 6 28 NA 14.9 66 5 6
## 10 NA 194 8.6 69 5 10
## 11 7 NA 6.9 74 5 11
## 25 NA 66 16.6 57 5 25
## 26 NA 266 14.9 58 5 26

Sorting data

We can sort variables with the sort function. The default ordering is increasing. For example,
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sort(iris$Sepal.Length)

## [1] 4.3 4.4 4.4 4.4 4.5 4.6 4.6 4.6 4.6 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9
## [19] 4.9 4.9 4.9 4.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.1 5.1 5.1 5.1
## [37] 5.1 5.1 5.1 5.1 5.1 5.2 5.2 5.2 5.2 5.3 5.4 5.4 5.4 5.4 5.4 5.4 5.5 5.5
## [55] 5.5 5.5 5.5 5.5 5.5 5.6 5.6 5.6 5.6 5.6 5.6 5.7 5.7 5.7 5.7 5.7 5.7 5.7
## [73] 5.7 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.9 5.9 5.9 6.0 6.0 6.0 6.0 6.0 6.0 6.1
## [91] 6.1 6.1 6.1 6.1 6.1 6.2 6.2 6.2 6.2 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3
## [109] 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.5 6.5 6.5 6.5 6.5 6.6 6.6 6.7 6.7 6.7 6.7
## [127] 6.7 6.7 6.7 6.7 6.8 6.8 6.8 6.9 6.9 6.9 6.9 7.0 7.1 7.2 7.2 7.2 7.3 7.4
## [145] 7.6 7.7 7.7 7.7 7.7 7.9

sort(iris$Species)

## [1] setosa setosa setosa setosa setosa setosa
## [7] setosa setosa setosa setosa setosa setosa
## [13] setosa setosa setosa setosa setosa setosa
## [19] setosa setosa setosa setosa setosa setosa
## [25] setosa setosa setosa setosa setosa setosa
## [31] setosa setosa setosa setosa setosa setosa
## [37] setosa setosa setosa setosa setosa setosa
## [43] setosa setosa setosa setosa setosa setosa
## [49] setosa setosa versicolor versicolor versicolor versicolor
## [55] versicolor versicolor versicolor versicolor versicolor versicolor
## [61] versicolor versicolor versicolor versicolor versicolor versicolor
## [67] versicolor versicolor versicolor versicolor versicolor versicolor
## [73] versicolor versicolor versicolor versicolor versicolor versicolor
## [79] versicolor versicolor versicolor versicolor versicolor versicolor
## [85] versicolor versicolor versicolor versicolor versicolor versicolor
## [91] versicolor versicolor versicolor versicolor versicolor versicolor
## [97] versicolor versicolor versicolor versicolor virginica virginica
## [103] virginica virginica virginica virginica virginica virginica
## [109] virginica virginica virginica virginica virginica virginica
## [115] virginica virginica virginica virginica virginica virginica
## [121] virginica virginica virginica virginica virginica virginica
## [127] virginica virginica virginica virginica virginica virginica
## [133] virginica virginica virginica virginica virginica virginica
## [139] virginica virginica virginica virginica virginica virginica
## [145] virginica virginica virginica virginica virginica virginica
## Levels: setosa versicolor virginica

If we want descending order, we can add the option decreasing = TRUE:

sort(iris$Sepal.Length, decreasing = TRUE)

## [1] 7.9 7.7 7.7 7.7 7.7 7.6 7.4 7.3 7.2 7.2 7.2 7.1 7.0 6.9 6.9 6.9 6.9 6.8
## [19] 6.8 6.8 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.6 6.6 6.5 6.5 6.5 6.5 6.5 6.4
## [37] 6.4 6.4 6.4 6.4 6.4 6.4 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.2 6.2 6.2
## [55] 6.2 6.1 6.1 6.1 6.1 6.1 6.1 6.0 6.0 6.0 6.0 6.0 6.0 5.9 5.9 5.9 5.8 5.8
## [73] 5.8 5.8 5.8 5.8 5.8 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.6 5.6 5.6 5.6 5.6
## [91] 5.6 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.4 5.4 5.4 5.4 5.4 5.4 5.3 5.2 5.2 5.2
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## [109] 5.2 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
## [127] 5.0 5.0 4.9 4.9 4.9 4.9 4.9 4.9 4.8 4.8 4.8 4.8 4.8 4.7 4.7 4.6 4.6 4.6
## [145] 4.6 4.5 4.4 4.4 4.4 4.3

This only works with vectors. What if we want to order a data.frame according to the values of one of the
variables? For that task, we can use order.

For example, if we want to order iris in ascending order by Sepal.Length:

head(iris[order(iris$Sepal.Length),])

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 14 4.3 3.0 1.1 0.1 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 39 4.4 3.0 1.3 0.2 setosa
## 43 4.4 3.2 1.3 0.2 setosa
## 42 4.5 2.3 1.3 0.3 setosa
## 4 4.6 3.1 1.5 0.2 setosa

I’m adding head() so that R doesn’t print the full dataset.

If we want descending order instead:

head(iris[order(-iris$Sepal.Length),])

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 132 7.9 3.8 6.4 2.0 virginica
## 118 7.7 3.8 6.7 2.2 virginica
## 119 7.7 2.6 6.9 2.3 virginica
## 123 7.7 2.8 6.7 2.0 virginica
## 136 7.7 3.0 6.1 2.3 virginica
## 106 7.6 3.0 6.6 2.1 virginica

When there are “ties”, we can also sort the data by a second variable. For example, if we sort the data in
descending order by Species, there will be a lot of observations that will share the same value of Species.
If, given the species, we want to sort in ascending order by Petal.Width, this will do that for us

head(iris[order(-iris$Species, iris$Petal.Width),])

## Warning in Ops.factor(iris$Species): ’-’ not meaningful for factors

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 10 4.9 3.1 1.5 0.1 setosa
## 13 4.8 3.0 1.4 0.1 setosa
## 14 4.3 3.0 1.1 0.1 setosa
## 33 5.2 4.1 1.5 0.1 setosa
## 38 4.9 3.6 1.4 0.1 setosa
## 1 5.1 3.5 1.4 0.2 setosa

library(tidyverse) has the function arrange, which is the analogue of order.

The following piece of code sorts the dataset in ascending order by Sepal.Length
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head(iris %>% arrange(Sepal.Length))

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 4.3 3.0 1.1 0.1 setosa
## 2 4.4 2.9 1.4 0.2 setosa
## 3 4.4 3.0 1.3 0.2 setosa
## 4 4.4 3.2 1.3 0.2 setosa
## 5 4.5 2.3 1.3 0.3 setosa
## 6 4.6 3.1 1.5 0.2 setosa

If we want descending order

head(iris %>% arrange(desc(Sepal.Length)))

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 7.9 3.8 6.4 2.0 virginica
## 2 7.7 3.8 6.7 2.2 virginica
## 3 7.7 2.6 6.9 2.3 virginica
## 4 7.7 2.8 6.7 2.0 virginica
## 5 7.7 3.0 6.1 2.3 virginica
## 6 7.6 3.0 6.6 2.1 virginica

And the following sorts in descending order by Species, and then in ascending order by Petal.Width.

head(iris %>% arrange(desc(Species), Petal.Width))

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 6.1 2.6 5.6 1.4 virginica
## 2 6.0 2.2 5.0 1.5 virginica
## 3 6.3 2.8 5.1 1.5 virginica
## 4 7.2 3.0 5.8 1.6 virginica
## 5 4.9 2.5 4.5 1.7 virginica
## 6 6.3 2.9 5.6 1.8 virginica

An advantage of using arrange is that we don’t have to type iris$<variable name> all the time.

Type conversions

Oftentimes, categorical variables are coded as numerical. For example, let’s look at the dataset femrole.dat,
which is uploaded on Professor Winner’s website. A description of the dataset can be found here and the
data can be accessed here. As you can see, there are 4 categorical variables that are coded as numerical.
How do we convert these variables to factors?

The following instruction reads in the data

femrole = read.table("http://users.stat.ufl.edu/~winner/data/femrole.dat", header = FALSE)

Now, we can print it
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femrole

## V1 V2 V3 V4 V5
## 1 1 1 1 1 11
## 2 1 2 1 1 12
## 3 2 1 1 1 10
## 4 2 2 1 1 12
## 5 1 1 1 2 13
## 6 1 2 1 2 12
## 7 2 1 1 2 8
## 8 2 2 1 2 29
## 9 1 1 2 1 11
## 10 1 2 2 1 6
## 11 2 1 2 1 4
## 12 2 2 2 1 13
## 13 1 1 2 2 17
## 14 1 2 2 2 8
## 15 2 1 2 2 9
## 16 2 2 2 2 33

First of all, the columns don’t have interpretable names. We can change the names as follows:

colnames(femrole) = c("personality", "role", "friends", "dates", "count")

The variables personality, role, friends, and dates are categorical, but in femrole they are coded as
numerical. To see this, we can run

str(femrole)

## ’data.frame’: 16 obs. of 5 variables:
## $ personality: int 1 1 2 2 1 1 2 2 1 1 ...
## $ role : int 1 2 1 2 1 2 1 2 1 2 ...
## $ friends : int 1 1 1 1 1 1 1 1 2 2 ...
## $ dates : int 1 1 1 1 2 2 2 2 1 1 ...
## $ count : int 11 12 10 12 13 12 8 29 11 6 ...

The output tells us that personality, role, friends, dates, and count are of type int, which means that
they’re encoded as integers.

R functions can treat variables differently depending on whether they are numerical or categorical. If we
don’t convert the variables, we can get meaningless output.

We can convert the variables to factors using as.factor:

femrole$personality = as.factor(femrole$personality)
femrole$role = as.factor(femrole$role)
femrole$friends = as.factor(femrole$friends)
femrole$dates = as.factor(femrole$dates)

Let’s run str again:
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str(femrole)

## ’data.frame’: 16 obs. of 5 variables:
## $ personality: Factor w/ 2 levels "1","2": 1 1 2 2 1 1 2 2 1 1 ...
## $ role : Factor w/ 2 levels "1","2": 1 2 1 2 1 2 1 2 1 2 ...
## $ friends : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 2 2 ...
## $ dates : Factor w/ 2 levels "1","2": 1 1 1 1 2 2 2 2 1 1 ...
## $ count : int 11 12 10 12 13 12 8 29 11 6 ...

We have succesfully changed their type from integer to factor. However, the levels of the factors are
noninformative. We can change them using levels:

levels(femrole$personality) = c("Modern", "Traditional")
levels(femrole$role) = c("Modern", "Traditional")
levels(femrole$friends) = c("Low", "High")
levels(femrole$dates) = c("Low", "High")

Exercises. Read in the dataset interfaith.dat, which is available on Professor Winner’s website or by
clicking here (the description is available here). Change the variable names to something informative, convert
the appropriate variables into factors, and rename the levels of the factors using meaningful labels.

• What percentage of catholics are of low socioeconomic status?

• What percentage of protestants are of low socioeconomic status?

• What percentage of catholics are in an interfaith relationship?

• What percentage of protestants are in an interfaith relationship?

As you can imagine, other type conversions are possible. For instance, we can convert from matrix to
data.frame with as.data.frame:

mat = matrix(c(1,2,3,4,5,6), nrow = 3, ncol = 3)
df = as.data.frame(mat)

Now, df is of class data.frame:

class(df)

## [1] "data.frame"

We can also convert data.frames that contain numeric variables to matrix using as.matrix.

df = data.frame(var1 = 1:3, var2 = 4:6)
mat = as.matrix(df)

And, unsurprisingly,

class(mat)

## [1] "matrix" "array"
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Reformatting datasets

Aggregated data

Let’s take a closer look at the femrole dataset, which we formatted in a previous section.

femrole

## personality role friends dates count
## 1 Modern Modern Low Low 11
## 2 Modern Traditional Low Low 12
## 3 Traditional Modern Low Low 10
## 4 Traditional Traditional Low Low 12
## 5 Modern Modern Low High 13
## 6 Modern Traditional Low High 12
## 7 Traditional Modern Low High 8
## 8 Traditional Traditional Low High 29
## 9 Modern Modern High Low 11
## 10 Modern Traditional High Low 6
## 11 Traditional Modern High Low 4
## 12 Traditional Traditional High Low 13
## 13 Modern Modern High High 17
## 14 Modern Traditional High High 8
## 15 Traditional Modern High High 9
## 16 Traditional Traditional High High 33

The data are aggregated: each row corresponds to a certain social profile. The last column counts how many
observations there are for each profile (for example, 11 women in the survey have a Modern personality,
Modern role, Low number friends, and Low number of dates). Unfortunately, R isn’t very good at working
with data in this format. For example, suppose that we want a 2 by 2 table with dates and personality.
If we type in

table(femrole$dates, femrole$personality)

##
## Modern Traditional
## Low 4 4
## High 4 4

we get the wrong answer, because it’s not using the count column. The problem is not restricted to tables:
plots and statistical methods in R are coded in a way that makes working with aggregated data difficult.

The most convenient format is a dataset where the rows correspond to different individuals (in this case, each
row should correspond to a different woman). Thankfully, the function uncount in library(tidyverse)
makes the conversion easy.

unaggregated = femrole %>% uncount(count)

The argument of uncount is the variable that contains the counts (which, in this case, is conveniently
named count). The number of rows of unaggregated is equal to sum(femrole$count). That is, each
“sociological profile” (each combination of personality, role, friends, and dates) is repeated as many
times as indicated in femrole$count.

With unaggregated, we can find a 2 by 2 table of dates and personality using a table statement:
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table(unaggregated$dates, unaggregated$personality)

##
## Modern Traditional
## Low 40 39
## High 50 79

We can convert unaggregated back into an aggregated format using count:

unaggregated %>% count(personality, role, friends, dates)

## personality role friends dates n
## 1 Modern Modern Low Low 11
## 2 Modern Modern Low High 13
## 3 Modern Modern High Low 11
## 4 Modern Modern High High 17
## 5 Modern Traditional Low Low 12
## 6 Modern Traditional Low High 12
## 7 Modern Traditional High Low 6
## 8 Modern Traditional High High 8
## 9 Traditional Modern Low Low 10
## 10 Traditional Modern Low High 8
## 11 Traditional Modern High Low 4
## 12 Traditional Modern High High 9
## 13 Traditional Traditional Low Low 12
## 14 Traditional Traditional Low High 29
## 15 Traditional Traditional High Low 13
## 16 Traditional Traditional High High 33

The arguments in count are the variables which we use for counting. For instance, compare the result above
to

unaggregated %>% count(personality, dates)

## personality dates n
## 1 Modern Low 40
## 2 Modern High 50
## 3 Traditional Low 39
## 4 Traditional High 79

Exercises. Answer the following questions using the interfaith.dat dataset

• What is the percentage of low socioeconomic status indivduals in an interfaith relationship?

• What is the percentage of high socioeconomic status individuals in an interfaith relationship?

• What is the value of (% interfaith relationship among men) - (% interfaith relationship among women)?

• Let’s consider protestants only. What is the value of (% interfaith relationship among men) - (%
interfaith relationship among women)?

• Let’s consider catholics only. What is the value of (% interfaith relationship among men) - (% interfaith
relationship among women)?
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gather: from wide format to long format

Suppose you want to compare outcomes with 3 treatments, and your data look like this

wide

## # A tibble: 5 x 3
## Treat1 Treat2 Treat3
## <dbl> <dbl> <dbl>
## 1 -1.60 0.983 -0.2
## 2 0.409 -0.671 -0.022
## 3 -0.019 -0.313 -1.74
## 4 -0.251 3.25 1.88
## 5 0.306 2.06 -0.083

Some people would say that the data is in “wide format.”

Data in wide format aren’t convenient for running our analyses: if you want to run statistical methods or
create plots, most R functions expect to have all the outcomes in one column, and the categories (treatments)
in another column. This alternative formatting is called “long format”. You can go from wide to long format
using gather in library(tidyverse).

data %>% gather(key=treatment, value=outcome, Treat1, Treat2, Treat3)

## # A tibble: 15 x 2
## treatment outcome
## <chr> <dbl>
## 1 Treat1 -1.60
## 2 Treat1 0.409
## 3 Treat1 -0.019
## 4 Treat1 -0.251
## 5 Treat1 0.306
## 6 Treat2 0.983
## 7 Treat2 -0.671
## 8 Treat2 -0.313
## 9 Treat2 3.25
## 10 Treat2 2.06
## 11 Treat3 -0.2
## 12 Treat3 -0.022
## 13 Treat3 -1.74
## 14 Treat3 1.88
## 15 Treat3 -0.083

The first argument in gather is for naming the new column that contains the categories (the key), the
second one is for naming the column where the new outcomes will be stored (the value), and then you write
the names of the columns that contain the outcomes you want to gather. An equivalent way of writing the
same thing is:

data %>% gather(key=treatment, value=outcome, Treat1:Treat3)

## # A tibble: 15 x 2
## treatment outcome
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## <chr> <dbl>
## 1 Treat1 -1.60
## 2 Treat1 0.409
## 3 Treat1 -0.019
## 4 Treat1 -0.251
## 5 Treat1 0.306
## 6 Treat2 0.983
## 7 Treat2 -0.671
## 8 Treat2 -0.313
## 9 Treat2 3.25
## 10 Treat2 2.06
## 11 Treat3 -0.2
## 12 Treat3 -0.022
## 13 Treat3 -1.74
## 14 Treat3 1.88
## 15 Treat3 -0.083

In Treat1:Treat3 we gave R a range of columns which we want to gather (first to last). This is useful if
you have many variables.

What if your data is in wide format, but you have an uneven number of observations? That is, your data
looks something like this

uneven

## # A tibble: 5 x 3
## Treat1 Treat2 Treat3
## <dbl> <dbl> <dbl>
## 1 -1.60 0.983 -0.2
## 2 0.409 -0.671 -0.022
## 3 -0.019 -0.313 -1.74
## 4 -0.251 3.25 NA
## 5 NA 2.06 NA

Let’s try to gather:

uneven %>% gather(key = treatment, value = outcome, Treat1:Treat3)

## # A tibble: 15 x 2
## treatment outcome
## <chr> <dbl>
## 1 Treat1 -1.60
## 2 Treat1 0.409
## 3 Treat1 -0.019
## 4 Treat1 -0.251
## 5 Treat1 NA
## 6 Treat2 0.983
## 7 Treat2 -0.671
## 8 Treat2 -0.313
## 9 Treat2 3.25
## 10 Treat2 2.06
## 11 Treat3 -0.2
## 12 Treat3 -0.022
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## 13 Treat3 -1.74
## 14 Treat3 NA
## 15 Treat3 NA

Unfortunately, we get some NAs. We can get rid of them with na.omit:

uneven %>% gather(key = treatment, value = outcome, Treat1:Treat3) %>%
na.omit

## # A tibble: 12 x 2
## treatment outcome
## <chr> <dbl>
## 1 Treat1 -1.60
## 2 Treat1 0.409
## 3 Treat1 -0.019
## 4 Treat1 -0.251
## 5 Treat2 0.983
## 6 Treat2 -0.671
## 7 Treat2 -0.313
## 8 Treat2 3.25
## 9 Treat2 2.06
## 10 Treat3 -0.2
## 11 Treat3 -0.022
## 12 Treat3 -1.74

spread: from long to wide format

If you want to go from long to wide format, you can use spread.

For example, if your data are

data2

## # A tibble: 15 x 3
## # Groups: treatment [3]
## treatment outcome ind
## <chr> <dbl> <int>
## 1 Treat1 -1.60 1
## 2 Treat1 0.409 2
## 3 Treat1 -0.019 3
## 4 Treat1 -0.251 4
## 5 Treat1 0.306 5
## 6 Treat2 0.983 1
## 7 Treat2 -0.671 2
## 8 Treat2 -0.313 3
## 9 Treat2 3.25 4
## 10 Treat2 2.06 5
## 11 Treat3 -0.2 1
## 12 Treat3 -0.022 2
## 13 Treat3 -1.74 3
## 14 Treat3 1.88 4
## 15 Treat3 -0.083 5
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You can convert it to wide format as follows

data2 %>% spread(treatment, outcome)

## # A tibble: 5 x 4
## ind Treat1 Treat2 Treat3
## <int> <dbl> <dbl> <dbl>
## 1 1 -1.60 0.983 -0.2
## 2 2 0.409 -0.671 -0.022
## 3 3 -0.019 -0.313 -1.74
## 4 4 -0.251 3.25 1.88
## 5 5 0.306 2.06 -0.083

Note that data2 isn’t just our dataset that came out of gathering. In fact, if we start with

gath = data %>% gather(key=treatment, value=outcome, Treat1:Treat3)

and we try to spread, we’ll get an error. R complains because the rows of gath aren’t uniquely identifiable.
A way to get around that is creating index variables within the treatments

gath = gath %>% group_by(treatment) %>% mutate(id=row_number())
gath

## # A tibble: 15 x 3
## # Groups: treatment [3]
## treatment outcome id
## <chr> <dbl> <int>
## 1 Treat1 -1.60 1
## 2 Treat1 0.409 2
## 3 Treat1 -0.019 3
## 4 Treat1 -0.251 4
## 5 Treat1 0.306 5
## 6 Treat2 0.983 1
## 7 Treat2 -0.671 2
## 8 Treat2 -0.313 3
## 9 Treat2 3.25 4
## 10 Treat2 2.06 5
## 11 Treat3 -0.2 1
## 12 Treat3 -0.022 2
## 13 Treat3 -1.74 3
## 14 Treat3 1.88 4
## 15 Treat3 -0.083 5

and then, we can spread (and get rid of id):

gath %>% spread(treatment, outcome) %>% select(-id)

## # A tibble: 5 x 3
## Treat1 Treat2 Treat3
## <dbl> <dbl> <dbl>
## 1 -1.60 0.983 -0.2
## 2 0.409 -0.671 -0.022
## 3 -0.019 -0.313 -1.74
## 4 -0.251 3.25 1.88
## 5 0.306 2.06 -0.083
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Creating, modifying, and renaming variables

We can use mutate if we want to transform/create new variables. Let’s load in the hsb2 dataset and use it
in our examples.

hsb2 = read.csv("http://vicpena.github.io/sta9750/spring19/hsb2.csv") %>% select(-X, -id)

For example, if we want to create a new variable called avg which contains the average score in read, math,
write, science, and socst:

hsb2 = hsb2 %>% mutate(avg=(read+math+write+science+socst)/5)

One would expect hsb2 %>% mutate(avg=mean(read,write,math,science,socst)) to work, but it
doesn’t. The problem is that mutate operates by columns. We can force R to operate by row using rowwise:

hsb2 %>% rowwise() %>% mutate(avg=mean(c(read,math, write,science,socst)))

## # A tibble: 200 x 11
## # Rowwise:
## gender race ses schtyp prog read write math science socst avg
## <chr> <chr> <chr> <chr> <chr> <int> <int> <int> <int> <int> <dbl>
## 1 male white low public general 57 52 41 47 57 50.8
## 2 female white midd~ public vocati~ 68 59 53 63 61 60.8
## 3 male white high public general 44 33 54 58 31 44
## 4 male white high public vocati~ 63 44 47 53 56 52.6
## 5 male white midd~ public academ~ 47 52 57 53 61 54
## 6 male white midd~ public academ~ 44 52 51 63 61 54.2
## 7 male african am~ midd~ public general 50 59 42 53 61 53
## 8 male hispanic midd~ public academ~ 34 46 45 39 36 40
## 9 male white midd~ public general 63 57 54 58 51 56.6
## 10 male african am~ midd~ public academ~ 57 55 52 50 51 53
## # ... with 190 more rows

We can use transmute to create new variables and keep only the new variables that we create. For example,
if we want to compute the average of the scores and a new variable called white that takes on the values
white if the student is white and nonwhite otherwise:

hsb2new = hsb2 %>% transmute(white = ifelse(race == "white", "white", "nonwhite"), avg = (read+math+write+science+socst)/5)

The function ifelse expects 3 arguments. The first one is a logical condition. The second argument is
the value that should be assigned if the condition is TRUE. The third argument is the value that should be
assigned if the condition is FALSE.

If we want to apply the same transformation to more than one variable, we can use the mutate_at. For
example, if we want to convert the test scores (in grade %) to z-scores:

hsb2_zscores = hsb2 %>% mutate_at(c("read", "write", "math", "science", "socst"), scale)
head(hsb2_zscores)

## gender race ses schtyp prog read write math
## 1 male white low public general 0.4652326 -0.08176325 -1.24300207
## 2 female white middle public vocational 1.5380959 0.65674353 0.03789315
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## 3 male white high public general -0.8026968 -2.08628164 0.14463442
## 4 male white high public vocational 1.0504307 -0.92577099 -0.60255446
## 5 male white middle public academic -0.5100977 -0.08176325 0.46485822
## 6 male white middle public academic -0.8026968 -0.08176325 -0.17558939
## science socst avg
## 1 -0.4898549 0.4280075 50.8
## 2 1.1261613 0.8005929 60.8
## 3 0.6211562 -1.9937977 44.0
## 4 0.1161512 0.3348611 52.6
## 5 0.1161512 0.8005929 54.0
## 6 1.1261613 0.8005929 54.2

We can use mutate_at for type conversions. Let’s read in the femrole dataset again

femrole = read.table("http://users.stat.ufl.edu/~winner/data/femrole.dat", header=F)
summary(femrole)

## V1 V2 V3 V4 V5
## Min. :1.0 Min. :1.0 Min. :1.0 Min. :1.0 Min. : 4.00
## 1st Qu.:1.0 1st Qu.:1.0 1st Qu.:1.0 1st Qu.:1.0 1st Qu.: 8.75
## Median :1.5 Median :1.5 Median :1.5 Median :1.5 Median :11.50
## Mean :1.5 Mean :1.5 Mean :1.5 Mean :1.5 Mean :13.00
## 3rd Qu.:2.0 3rd Qu.:2.0 3rd Qu.:2.0 3rd Qu.:2.0 3rd Qu.:13.00
## Max. :2.0 Max. :2.0 Max. :2.0 Max. :2.0 Max. :33.00

Variables V1, V2, V3, and V4 are actually categorical and we want to convert them to factors. In a previous
section, we did the type conversion one variable at a time. A shorter way of converting the variables to
factors is

femrole2 = femrole %>% mutate_at(c("V1", "V2", "V3", "V4"), as.factor)
str(femrole2)

## ’data.frame’: 16 obs. of 5 variables:
## $ V1: Factor w/ 2 levels "1","2": 1 1 2 2 1 1 2 2 1 1 ...
## $ V2: Factor w/ 2 levels "1","2": 1 2 1 2 1 2 1 2 1 2 ...
## $ V3: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 2 2 ...
## $ V4: Factor w/ 2 levels "1","2": 1 1 1 1 2 2 2 2 1 1 ...
## $ V5: int 11 12 10 12 13 12 8 29 11 6 ...

If we want to use mutate_at by specifying the columns on which the transformation won’t be applied, we
have to be a little careful: we have to add vars() to our command.

femrole2 = femrole %>% mutate_at(vars(-V5), as.factor)
str(femrole2)

## ’data.frame’: 16 obs. of 5 variables:
## $ V1: Factor w/ 2 levels "1","2": 1 1 2 2 1 1 2 2 1 1 ...
## $ V2: Factor w/ 2 levels "1","2": 1 2 1 2 1 2 1 2 1 2 ...
## $ V3: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 2 2 ...
## $ V4: Factor w/ 2 levels "1","2": 1 1 1 1 2 2 2 2 1 1 ...
## $ V5: int 11 12 10 12 13 12 8 29 11 6 ...
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If we want to transform variables that satisfy a certain logical condition, we can use mutate_if. For example,
let’s take a look at a summary(femrole).

summary(femrole)

## V1 V2 V3 V4 V5
## Min. :1.0 Min. :1.0 Min. :1.0 Min. :1.0 Min. : 4.00
## 1st Qu.:1.0 1st Qu.:1.0 1st Qu.:1.0 1st Qu.:1.0 1st Qu.: 8.75
## Median :1.5 Median :1.5 Median :1.5 Median :1.5 Median :11.50
## Mean :1.5 Mean :1.5 Mean :1.5 Mean :1.5 Mean :13.00
## 3rd Qu.:2.0 3rd Qu.:2.0 3rd Qu.:2.0 3rd Qu.:2.0 3rd Qu.:13.00
## Max. :2.0 Max. :2.0 Max. :2.0 Max. :2.0 Max. :33.00

The maximum value that variables V1 through V4 can take on is 2. Therefore, we can create a filter that
checks if the maximum of a variable is 2 or not, and apply as.factor as needed. Unfortunately, mutate_if
expects an argument that is a function that will be applied to each of the columns. The following command
works

femrole2 = femrole %>% mutate_if( ~ max(.) == 2, as.factor)
str(femrole2)

## ’data.frame’: 16 obs. of 5 variables:
## $ V1: Factor w/ 2 levels "1","2": 1 1 2 2 1 1 2 2 1 1 ...
## $ V2: Factor w/ 2 levels "1","2": 1 2 1 2 1 2 1 2 1 2 ...
## $ V3: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 2 2 ...
## $ V4: Factor w/ 2 levels "1","2": 1 1 1 1 2 2 2 2 1 1 ...
## $ V5: int 11 12 10 12 13 12 8 29 11 6 ...

The tilde ~ indicates that what comes after will be a function. Within the function, the argument is denoted
with .. An equivalent (and perhaps easier to understand) way to do this is the following. First, define a
function that checks whether the maximum of a variable x is 2 or not:

max2 = function(x) { max(x) == 2 }

Then, you can use max2 in mutate_if:

femrole2 = femrole %>% mutate_if(max2, as.factor)
str(femrole2)

## ’data.frame’: 16 obs. of 5 variables:
## $ V1: Factor w/ 2 levels "1","2": 1 1 2 2 1 1 2 2 1 1 ...
## $ V2: Factor w/ 2 levels "1","2": 1 2 1 2 1 2 1 2 1 2 ...
## $ V3: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 2 2 ...
## $ V4: Factor w/ 2 levels "1","2": 1 1 1 1 2 2 2 2 1 1 ...
## $ V5: int 11 12 10 12 13 12 8 29 11 6 ...

Same thing.

There is a select_if function that works the same way as mutate_if. For example, if, after doing the type
conversion, we want to create a subset that only contains the factors:
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femrole3 = femrole2 %>% select_if(is.factor)
str(femrole3)

## ’data.frame’: 16 obs. of 4 variables:
## $ V1: Factor w/ 2 levels "1","2": 1 1 2 2 1 1 2 2 1 1 ...
## $ V2: Factor w/ 2 levels "1","2": 1 2 1 2 1 2 1 2 1 2 ...
## $ V3: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 2 2 ...
## $ V4: Factor w/ 2 levels "1","2": 1 1 1 1 2 2 2 2 1 1 ...

We can also rename variables. If we want to change ses ro status:

hsb2 = hsb2 %>% rename(status = ses)

In “old R”, we can rename columns by indexing colnames().

Some utility functions for identifying columns

Sometimes we want to select or transform columns that satisfy some condition. The functions
starts_with(), ends_with(), contains(), and num_range() can help us get the subsets we want.

For example, let’s go back to the iris dataset. If we want to select the variables that have to do with the
sepal of the flower, we can use

sepal = iris %>% select(starts_with("Sepal"))

If we want the variables that have to do with widths:

width = iris %>% select(ends_with("Width"))

In fact, we didn’t need to use start_with or ends_with. We could’ve used contains, which checks if a
column contains the string or not.

num_range() is useful in datasets where there are variables whose names are something like a prefix, followed
by a number. That is, something like V1, V2, etc. For example, in the unformatted femrole dataset, we can
select the columns V1 through V4 as follows

fem14 = femrole %>% select(num_range("V", 1:4))

This example is a little silly, because we could’ve just written

fem14 = femrole %>% select(1:4)

Or even

fem14 = femrole %>% select(V1:V4)

The advantage of num_range() is that it works even if the columns are all scrambled. For example, try
applying the code above to the dataset
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fem_scramble = femrole %>% select(2,3,1,5,4)
head(fem_scramble)

## V2 V3 V1 V5 V4
## 1 1 1 1 11 1
## 2 2 1 1 12 1
## 3 1 1 2 10 1
## 4 2 1 2 12 1
## 5 1 1 1 13 2
## 6 2 1 1 12 2

In this case, only num_range() will get it right (and it will rearrange the order of the columns).

Obtaining summaries by categories of variables

We can create objects which contain summaries for different groups by combining group_by and summarize:

hsb2 %>% group_by(race) %>% summarize(medMath = median(math), sdMath = sd(math))

## ‘summarise()‘ ungrouping output (override with ‘.groups‘ argument)

## # A tibble: 4 x 3
## race medMath sdMath
## <chr> <dbl> <dbl>
## 1 african american 45 6.49
## 2 asian 61 10.1
## 3 hispanic 47 6.98
## 4 white 54 9.38

And we can combine these function with the other functions we learned today. For example:

hsb2 %>% group_by(race) %>% filter(math > 70) %>% summarize(n=n())

## ‘summarise()‘ ungrouping output (override with ‘.groups‘ argument)

## # A tibble: 2 x 2
## race n
## <chr> <int>
## 1 asian 1
## 2 white 9

Tells us that there are 10 people who got a math score greater than 70, and that 1 of them is asian and 9
of them are white. If we want percentages, we can mutate:

hsb2 %>% group_by(race) %>% filter(math > 70) %>% summarize(n=n()) %>% mutate(perc = n/sum(n))

## ‘summarise()‘ ungrouping output (override with ‘.groups‘ argument)
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## # A tibble: 2 x 3
## race n perc
## <chr> <int> <dbl>
## 1 asian 1 0.1
## 2 white 9 0.9

Exercises

Use the gapminder dataset in library(gapminder) to answer the following questions

• What was the average life expectancy in Africa in 1952?

• What was the average life expectancy in Africa in 2007?

• What continent experienced the highest percentage increase in life expectancy in the 1952-2007 period?

• What is the maximum gdp per capita in Africa in 2007? (in $ amount, not the country).

• What is the maximum gdp per capita in Europe in 2007? (in $ amount, not the country).

• What percentage of countries in Asia had a population of more than 50 million in 2007?

• What percentage of countries in Europe had a population of over 50 million in 2007?

Identifying a maximum

In this section, we’ll work with the gapminder dataset in library(gapminder). You can get information
about the dataset by typing in ?gapminder.

library(gapminder)
data(gapminder)

Suppose we want to find the row which has the highest entry for gdpPercap. You can use the which.max
function to identify the row number:

which.max(gapminder$gdpPercap)

## [1] 854

This tells us that the maximum gdpPercap can be found in row 854. Then, we can use this information to
index:

gapminder[which.max(gapminder$gdpPercap),]

## # A tibble: 1 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Kuwait Asia 1957 58.0 212846 113523.

We can also use tidyverse functions to find the maximum. The equivalent line of code would be
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gapminder %>% slice_max(gdpPercap)

## # A tibble: 1 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Kuwait Asia 1957 58.0 212846 113523.

If we want to see the “top 5” biggest gdpPercap, we would write

gapminder %>% slice_max(gdpPercap, n = 5)

## # A tibble: 5 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Kuwait Asia 1957 58.0 212846 113523.
## 2 Kuwait Asia 1972 67.7 841934 109348.
## 3 Kuwait Asia 1952 55.6 160000 108382.
## 4 Kuwait Asia 1962 60.5 358266 95458.
## 5 Kuwait Asia 1967 64.6 575003 80895.

There is a slice_min function that works the same way. It’s probably a good idea to play around with it
to get used to it.

Alternatively, we can also sort in descending order and and look at the first observation:

gapminder %>% arrange(desc(gdpPercap))

## # A tibble: 1,704 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Kuwait Asia 1957 58.0 212846 113523.
## 2 Kuwait Asia 1972 67.7 841934 109348.
## 3 Kuwait Asia 1952 55.6 160000 108382.
## 4 Kuwait Asia 1962 60.5 358266 95458.
## 5 Kuwait Asia 1967 64.6 575003 80895.
## 6 Kuwait Asia 1977 69.3 1140357 59265.
## 7 Norway Europe 2007 80.2 4627926 49357.
## 8 Kuwait Asia 2007 77.6 2505559 47307.
## 9 Singapore Asia 2007 80.0 4553009 47143.
## 10 Norway Europe 2002 79.0 4535591 44684.
## # ... with 1,694 more rows

We can use filters to find maxima by groups. For example, if we want to find the country that had the
highest gdpPercap in Asia in 2007:

gapminder %>% filter(year == 2007 & continent == "Asia") %>% arrange(desc(gdpPercap))

## # A tibble: 33 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Kuwait Asia 2007 77.6 2505559 47307.
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## 2 Singapore Asia 2007 80.0 4553009 47143.
## 3 Hong Kong, China Asia 2007 82.2 6980412 39725.
## 4 Japan Asia 2007 82.6 127467972 31656.
## 5 Bahrain Asia 2007 75.6 708573 29796.
## 6 Taiwan Asia 2007 78.4 23174294 28718.
## 7 Israel Asia 2007 80.7 6426679 25523.
## 8 Korea, Rep. Asia 2007 78.6 49044790 23348.
## 9 Oman Asia 2007 75.6 3204897 22316.
## 10 Saudi Arabia Asia 2007 72.8 27601038 21655.
## # ... with 23 more rows

We can also use group_by to find maxima by groups. For example, if we want to find the countries with the
highest gdpPercap in 2007 by continent:

gapminder %>% filter(year == 2007) %>% group_by(continent) %>% filter(gdpPercap == max(gdpPercap))

## # A tibble: 5 x 6
## # Groups: continent [5]
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Australia Oceania 2007 81.2 20434176 34435.
## 2 Gabon Africa 2007 56.7 1454867 13206.
## 3 Kuwait Asia 2007 77.6 2505559 47307.
## 4 Norway Europe 2007 80.2 4627926 49357.
## 5 United States Americas 2007 78.2 301139947 42952.

First, we subset the data so we only have observations from 2007. Then, we group by continent, and finally
we find the maximum gdpPercap (by continent).

Joining datasets

I’m using the examples in https://tidyverse.tidyverse.org/reference/join.html.

We will cover inner_join, left_join, right_join, full_join, semi_join, and anti_join. I could try to
write down definitions, but it’s clearer if you see examples.

We’ll work with

band_members

## # A tibble: 3 x 2
## name band
## <chr> <chr>
## 1 Mick Stones
## 2 John Beatles
## 3 Paul Beatles

band_instruments

## # A tibble: 3 x 2
## name plays
## <chr> <chr>
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## 1 John guitar
## 2 Paul bass
## 3 Keith guitar

Note that John and Paul appear in both datasets, but Mick appears only in band_members and Keith
appears only in band_instruments.

inner_join merges the datasets and only keeps the rows that appear in both.

band_members %>% inner_join(band_instruments, by = "name")

## # A tibble: 2 x 3
## name band plays
## <chr> <chr> <chr>
## 1 John Beatles guitar
## 2 Paul Beatles bass

The by statement indicates the name of the variable that is used for merging.

left_join merges the data and keeps all the rows in the “leftmost” dataset:

band_members %>% left_join(band_instruments, by = "name")

## # A tibble: 3 x 3
## name band plays
## <chr> <chr> <chr>
## 1 Mick Stones <NA>
## 2 John Beatles guitar
## 3 Paul Beatles bass

Note that Mick is there and Keith isn’t.

Analogously, right_join merges and keeps the rows in the “rightmost” dataset:

band_members %>% right_join(band_instruments, by = "name")

## # A tibble: 3 x 3
## name band plays
## <chr> <chr> <chr>
## 1 John Beatles guitar
## 2 Paul Beatles bass
## 3 Keith <NA> guitar

Note that Keith is there now, but Mick isn’t there anymore.

full_join merges and keeps all rows:

band_members %>% full_join(band_instruments, by = "name")

## # A tibble: 4 x 3
## name band plays
## <chr> <chr> <chr>
## 1 Mick Stones <NA>
## 2 John Beatles guitar
## 3 Paul Beatles bass
## 4 Keith <NA> guitar
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semi_join and anti_join use the “auxiliary” dataset as a way to filter out rows. For example, take a look
at

band_members %>% semi_join(band_instruments, by = "name")

## # A tibble: 2 x 2
## name band
## <chr> <chr>
## 1 John Beatles
## 2 Paul Beatles

semi_join returns the rows in band_members that have a match in band_instruments. Note that, in
contrast with the previous joins we have seen, there is no attempt at merging with band_instruments.
anti_join is conceptually similar, but returns the rows that don’t have a match in the auxiliary dataset:

band_members %>% anti_join(band_instruments, by = "name")

## # A tibble: 1 x 2
## name band
## <chr> <chr>
## 1 Mick Stones

Until now, the colnames in band_members and band_instruments matched. But what if we had

band_instruments2

## # A tibble: 3 x 2
## artist plays
## <chr> <chr>
## 1 John guitar
## 2 Paul bass
## 3 Keith guitar

An option is renaming the column name artists to name. Another option is indicating the matching columns
in the by statement. For example, if we want a full_join:

band_members %>% full_join(band_instruments2, by = c("name" = "artist"))

## # A tibble: 4 x 3
## name band plays
## <chr> <chr> <chr>
## 1 Mick Stones <NA>
## 2 John Beatles guitar
## 3 Paul Beatles bass
## 4 Keith <NA> guitar
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